hmwk_5_2010_solutions

hmwk_5_2010_solutions - CE 30125 Computational Methods:...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
CE 30125 Computational Methods: Assignment 5 December 8, 2010 Problem 1 A fourth order accurate central approximation to the second derivative (p=2, n=4) requires p + n - 1 = 2 + 4 - 1 = 6 - 1 = 5 nodes. The second central derivative can therefore be approximate to O(h 4 ) as: f (2) i - E = α 1 f i - 2 + α 2 f i - 1 + α 3 f i + α 4 f i +1 + α 5 f i +2 h 2 T.S. expansions about x i are: f i - 2 = f i - 2 hf (1) i + 2 h 2 f (2) i - 4 h 3 3 f (3) i + 2 h 4 3 f (4) i - 4 h 5 15 f (5) i + 4 h 6 45 f (6) i + O ( h 7 ) f i - 1 = f i - hf (1) i + h 2 2 f (2) i - h 3 6 f (3) i + h 4 24 f (4) i - h 5 120 f (5) i + h 6 720 f (6) i + O ( h 7 ) f i = f i f i +1 = f i + hf (1) i + h 2 2 f (2) i + h 3 6 f (3) i + h 4 24 f (4) i + h 5 120 f (5) i + h 6 720 f (6) i + O ( h 7 ) f i +2 = f i + 2 hf (1) i + 2 h 2 f (2) i + 4 h 3 3 f (3) i + 2 h 4 3 f (4) i + 4 h 5 15 f (5) i + 4 h 6 45 f (6) i + O ( h 7 ) Substituting into our assumed form of f i (2) and re-arranging: f (2) i - E = α 1 f i - 2 + α 2 f i - 1 α 3 f i + α 4 f i +1 + α 5 f i +2 h 2 = ( α 1 + α 2 + α 3 + α 4 + α 5 ) h 2 f i + ( - 2 α 1 - α 2 + α 4 + 2 α 5 ) h f (1) i + (2 α 1 + α 2 2 + α 4 2 + 2 α 5 ) f (2) i +( - 4 α 1 3 - α 2 6 + α 4 6 + 4 α 5 3 ) hf (3) i + ( 2 α 1 3 + α 2 24 + α 4 24 + 2 α 5 3 ) h 2 f (4) i + ( - 4 α 1 15 - α 2 120 + α 4 120 + 4 α 5 15 ) h 3 f (5) i +( 4 α 1 45 + α 2 720 + α 4 720 + 4 α 5 45 ) h 4 f (6) i We want f i (2) and 4 th order accuracy, so we note that the coefficients must satisfy the following equalities: α 1 + α 2 + α 3 + α 4 + α 5 = 0 - 2 α 1 - α 2 + α 4 + 2 α 5 = 0 2 α 1 + α 2 2 + α 4 2 + 2 α 5 = 1 - 4 α 1 3 - α 2 6 + α 4 6 + 4 α 5 3 = 0 2 α 1 3 + α 2 24 + α 4 24 + 2 α 5 3 = 0 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
We can then write this system of equations in matrix form AX = B 1 1 1 1 1 - 2 - 1 0 1 2 2 0 . 5 0 0 . 5 2 - 1 . 33333 - 0 . 16667 0 0 . 16667 1 . 33333 0 . 66667 0 . 041667 0 0 . 041667 0 . 66667 α 1 α 2 α 3 α 4 α 5 = 0 0 1 0 0 Solving this equation in Matlab (see asgn5 prob1.m) yields α 1 = - 1 12 , α 2 = 4 3 , α 3 = - 5 2 , α 4 = 4 3 , and α 5 = - 1 12 . The equation for our fourth order accurate central approximation to the second derivative now be- comes = (0) f i + (0) f (1) i + (1) f (2) i + (0) f (3) i + (0) f (4) i + (0) f (5) i + ( - 1 90 ) f (6) i + O ( h 5 ) The fourth order accurate central approximation to the second derivative is as follows:
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/02/2012 for the course CE 30125 taught by Professor Westerink,j during the Fall '08 term at Notre Dame.

Page1 / 9

hmwk_5_2010_solutions - CE 30125 Computational Methods:...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online