Test 1 - 2009 Solutions

Test 1 - 2009 Solutions - UNIVERSITY OF NOTRE DAME...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: UNIVERSITY OF NOTRE DAME Department of Civil Engineering and Geological Sciences CE 30125 Computational Methods Fall 2009 J.J. Westerink October 29, 2009 Test 1 NAME SOLUTION This exam is being conducted under the HONOR CODE. Please Sign your exam to indicate that you agree and have adhered to all the stipulations of the honor code. Signed 110$ 1. Please highlight your answers with a box. 2. Clearly show your steps!! 3, Taylor Series: _ - df (.t—U)ld2f f(x)~flaJ+(“””)Eu=u+ 31 — +(r—a)3daf i _ “d1- ?” Frza 4|(‘ a)Er:E Problem ] (20 points) Solve the following system of equations using the LU decomposition method. Note that you should re- arrange lhe system prior to solving. Indicate why you should rte—arrange the system. ’ I ~JF/i/rusT 3E Dig-Gamay Damn/AM j 4 9 II 7 (H?- ‘X H A 5 3 2 x3 7 7.3 5 X, “an a”- ' I 0 U ‘ (in qlL 4.5 I O 0 Pt" ' 2 1 P1: 1 a e 0 “in (3:5 ' : l O ‘ ' ' 'Psi P31 I o 0 C155 9/9 0.3%" g “in "5 Chi '5 9! out : (in : Lf qig 7-7 $3 -'—' Q2. 5 [011qu i: '2-7 Pal I: 5'21 = Putin +922 = 3: (If/q )(LD‘WZL 3? C322 '3: 6'12 : SG/q C429, = Pacts 19:3 = 3=I‘f/e.)(&3+‘izs 2) gas 2 2 = “V”! Q's! ‘—’ F3! “in "-‘* 2 => P3: 2 2/7; U :31; :4 Psi (it: “5' Page: :2 3 =1 (2/000? 1331(6921>=> P32: oral-[-12 (Di/$6 '53 ~ P2: Ch} 4' P32. ‘723 "r 933 3: 5 :— fifixfl +(d-é‘i'X-leD-I- 7‘5 AiLU ""7 AX=B => LUX=B iF“UX.=Y => “[733 f‘ZIXSé EoLUE LY 5: [3 1 ss— fi—o -6fi 1....__~_( is.) Problem 2 (20 points) Given data In = 0 110) =fo I1 1‘ hflh) =fi r gm = In” “,1” +1.31; Derive (using Taylor series) the error associated with this Lagrange Linear interpolating poiynomial. 8(1) = f(x) ‘ EU) Demonstrate that your answer conforms to the fundamental precept of Lagrange basis functions. fcx -: 7g + (X'X03fih + ‘X *Xo)z£[2)+ #517: 2'. 31:05:) 2' f:- j; -{‘ (Xi-"yafim .9 (xihfl)zfl(a "'1" Z’. _ (I): __' a _ j; “j; _ (XIZXD)JC(Z)+ MOI-Jr, 5) X,—-Xo=h foo: j, + (kayo) ‘" '%'fik‘}* M07] “*(ngdwm WW, 0’): a l—u/X'Xa} X—Xu fl) —h(X—Xu) (X—Xo) f h>+j(h z 4 7. “Lil/J11 =7Xo=0 f0) :1. (in) + 95%?) -+ fJ"‘(—A'>‘< M) + My. 2 ea) :ffx)~jC><) = fithfé‘JXZJfl/OT c) : -— [2)‘1’1559—90 : A '2) "-1100 4"} ._ 601) j]; —m( i I/ Problem 3 [25 points! Consider the following data: 2.0 . . r I ‘ Write the most accurate interpolating polynomial possible with this data. Compute an associated estimated error. 2 J' _ '5 I 909: ,5 .f (Ac—yo) + if (X—%)(X-Ml%; 4, giro—yaw Mx ninng + O,r O +m 30‘): #6.; + (X'z) 3&2 + ~_L(x—apt—10615.1)A _r___ (x-zxxvaxvé) 29% 2 Z 21 2-3 23 +0+04.,_ j“): —2a.l -+ 2x1 + 5.2x3 Fauna, THE TAELE WE ij; J 59 QCX)=O 062, AV}; Problem 4 {25 points) Given the following data: at x0 = 0 f0 is specified . . .. ....a_t x...= I]. and .fi'...’ are $P..E¢§fi.¢d .. .. . .. ... .. .. .. .. . (a) Derive g(.\'). (b) Derive the form of the Hermite basis functions when the interpolation function is expressed as: gm = fuun(-")+f1[11(1)+jini31(x) (c) Sketch the three basis functions. (aufiTflFrflTgi 0:) 3m: comm-Myra 3(o)=fu => on =31; z ’0 0 ‘q, j; 5‘0): 01. +2a1x 9013:}: =7 Qa+qih+qzh=fr l L 111] {it 5 J] 3‘(m:j.“‘=> qi+2m=fl° o I ah at: f,“ an.) at” (fisfiqt %7qgfitn)x+é _ f, +34”; X2 ' a o 0 (you: a bljfkT‘ffl—zx x1 ‘h h; T; ’ h h: 0‘ 1 " ° ‘1: W)*£(%*%)+Jfim «+39 0“ “I Gin-:42; qliw%_fi*%jfl fif'm 01: if" D Z: + jam ’1‘ H T Problem 5 10 oints Consider solving a diagonally dominant sparse system of 150,000 linear equations 29,000,000 times. There is no banded structure (Le. entries occur throughout the matrix) and there are 18 entries per equation. Given that the Gauss elimination solution of the full matrix takes 342 CPU hours, estimate how long the LU decomposition solution will take on the same computer. Then estimate how long the Gauss-Seidel solution will take on the same computer assuming that 7 iterations are required for eachof the 129,000,000 N: [.5405 _ 7 M: 23x10 "a, a] 3 3 'L M N gems dFEIZATmNs N OWN) KM (N *0] ) ——— M 1* OFEMTM = Mutt/3: 1787321022 Timfi FEE open-77m = WmE/fl ofEQATwnJS: E‘HZ (Fa/5:73?ng crematan :_ gcququ/EE—C a I 2— 1 arm ‘ — 1 .. EPU [1mg : Tm: {1m UPEQAT'MN x M X“ : atom 1753; x 2.9 Ira-’KQSWDfi z OFEK t: 2.23XIO-3f/g Gfi055~ §EiDEL 1-— A/x We “ cw 11m: ‘— Tuna 6254' opt-7:24am K fl/*< 1W KM ° ' .— : ski-wriz'src >< tsww‘ x 7 K Z-Q’V‘FXI? ENTR'ES ...__— of??qu : m) x10"; ’yafli l0 ...
View Full Document

This note was uploaded on 03/02/2012 for the course CE 30125 taught by Professor Westerink,j during the Fall '08 term at Notre Dame.

Page1 / 6

Test 1 - 2009 Solutions - UNIVERSITY OF NOTRE DAME...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online