Image_Processing - DSPClub CepstrumPresents...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
    DSP Club Cepstrum Presents-                      Talk on Image Processing       Speakers: Turaga Pavan                  Nishant Mohan
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Purpose of Talk Preview of the field Starting point for future IPians Knowledge of Modern Image  Processing
Background image of page 2
Plan of Talk Basics of image storage Major issues in IP Some Matlab functions Interesting Readings What’s on in IIT-G
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image as a Signal Image – 2D information of light intensity. Information Source, Focussing Agent,  Sensor. Nearly always digital.
Background image of page 4
Digital Images 2D array of numbers – representing  intensity. Numbers stored as bits.  Generally used – 8 bit/pixel, 16 bit/pixel.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Gray Scales Low intensity-  Lower gray scale  value Highest possible  gray level=2 n -1
Background image of page 6
Color Image Primary Colors- Red, Green, Blue. All colors can be formed by specifying  Each component is separately stored  like gray levels (3D matrix). Hence color images can occupy 3 times  the space required by b/w images.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image Storage Formats Popular formats : BMP, JPG, GIF, TIFF  etc Different formats – Different levels and  techniques of image compression Commercial Issues -  Registered  formats 
Background image of page 8
Compression Resolution of standard medical images  is : 1024x1024 A complete data set may contain 100  slices Storing as 8-bit/pixel Computer memory required = 800 Mb Hence compression is practically must
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
How to Compress Psycho-visual redundancy Spatial redundancy Mathematical models – Information  theoretic redundancies Transform coding
Background image of page 10
Matlab Function imread : reads image data in major  formats imwrite : writes image from given data imshow : shows image in matlab window
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Till Now ……… How to look at image as a signal Need for compression Why is compression possible                                Q?
Background image of page 12
Challenges in Image  Processing Image Enhancement Image Segmentation Image Understanding – retrieving  required information from an image.
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Common Problems with images – Noise Blur Low Contrast
Background image of page 14
Image of page 15
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 64

Image_Processing - DSPClub CepstrumPresents...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online