{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

TriangleElement_Seepage

TriangleElement_Seepage - CVEN4304 Structural Analysis...

This preview shows pages 1–6. Sign up to view the full content.

CVEN4304 Structural Analysis & Finite Elements Triangle Element Chongmin Song School of Civil and Environmental Engineering University of New South Wales

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Introduction Triangle elements are the most versatile in mesh generation. Description of mesh (as in 1D case) Global nodal number Element number Local nodal number ( counter-clockwise ) Element connectivity table Nodal functions One element Nodal hydraulic head: h ( e ) 1 , h ( e ) 2 , h ( e ) 3 Nodal flux: Q ( e ) 1 , Q ( e ) 2 , Q ( e ) 3
Shape function Linear interpolation of the nodal values h ( x , z ) = a 0 + a 1 x + a 2 z At the 3 nodes of element 1 x ( e ) 1 z ( e ) 1 1 x ( e ) 2 z ( e ) 2 1 x ( e ) 3 z ( e ) 3 a 0 a 1 a 2 = h ( e ) 1 h ( e ) 2 h ( e ) 3 Determinant of the coefficient matrix 2 A ( e ) = ( x ( e ) 2 z ( e ) 3 - x ( e ) 3 z ( e ) 2 ) + ( x ( e ) 3 z ( e ) 1 - x ( e ) 1 z ( e ) 3 ) + ( x ( e ) 1 z ( e ) 2 - x ( e ) 2 z ( e ) 1 ) The solution for constants a 0 , a 1 and a 2 a 0 = 1 2 A ( e ) (( x ( e ) 2 z ( e ) 3 - x ( e ) 3 z ( e ) 2 ) h ( e ) 1 + ( x ( e ) 3 z ( e ) 1 - x ( e ) 1 z ( e ) 3 ) h ( e ) 2 + ( x ( e ) 1 z ( e ) 2 - x ( e ) 2 z ( e ) 1 ) h ( e ) 3 ) a 1 = 1 2 A ( e ) (( z ( e ) 2 - z ( e ) 3 ) h ( e ) 1 + ( z ( e ) 3 - z ( e ) 1 ) h ( e ) 2 + ( z ( e ) 1 - z ( e ) 2 ) h ( e ) 3 ) a 2 = 1 2 A ( e ) (( x ( e ) 3 - x ( e ) 2 ) h ( e ) 1 + ( x ( e ) 1 - x ( e ) 3 ) h ( e ) 2 + ( x ( e ) 2 - x ( e ) 1 ) h ( e ) 3 )

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Shape function (cont’ed) Hydraulic head within element h ( x , z ) = N ( e ) 1 ( x , z ) h ( e ) 1 + N ( e ) 2 ( x , z ) h ( e ) 2 + N ( e ) 3 ( x , z ) h ( e ) 3 = [ N ( e ) ( x , z )] { h ( e ) } Shape functions [ N ( e ) ( x , z )] = [ N ( e ) 1 ( x , z ) N ( e ) 2 ( x , z ) N ( e ) 3 ( x , z ) ] where N ( e ) 1 ( x , z ) = 1 2 A ( e ) (( x ( e ) 2 z ( e ) 3 - x ( e ) 3 z ( e ) 2 ) + ( z ( e ) 2 - z ( e ) 3 ) x + ( x ( e ) 3 - x ( e ) 2 ) z ) N ( e ) 2 ( x , z ) = 1 2 A ( e ) (( x ( e ) 3 z ( e ) 1 - x ( e ) 1 z ( e ) 3 ) + ( z ( e ) 3 - z ( e ) 1 ) x + ( x ( e ) 1 - x ( e ) 3 ) z ) N ( e ) 3 ( x , z ) = 1 2 A ( e ) (( x ( e ) 1 z ( e ) 2 - x ( e ) 2 z ( e ) 1 ) + ( z ( e ) 1 - z ( e ) 2 ) x + ( x ( e ) 2 - x ( e ) 1 ) z ) Note that the area of an element A ( e ) must not be zero!
Shape function (cont’ed)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}