Lipschitz condition - Math 128A Spring 2002 Handout # 26...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 128A Spring 2002 Handout # 26 Sergey Fomel April 30, 2002 Answers to Homework 10: Numerical Solution of ODE: One-Step Methods 1. (a) Which of the following functions satisfy the Lipschitz condition on y ? For those that do, find the Lipschitz constant. i. f ( x , y ) = p x 2 + y 2 for x ∈ [- 1,1] ii. f ( x , y ) = | y | iii. f ( x , y ) = √ | y | iv. f ( x , y ) = | y | / x for x ∈ [- 1,1] Answer: i. f ( x , y ) = p x 2 + y 2 for x ∈ [- 1,1] satisfies the Lipschitz condition. It is proved by the following chain of equalities and inequalities: | f ( x , y 1 )- f ( x , y 2 ) | = q x 2 + y 2 1- q x 2 + y 2 2 = | y 2 1- y 2 2 | q x 2 + y 2 1 + q x 2 + y 2 2 = | y 1 + y 2 | q x 2 + y 2 1 + q x 2 + y 2 2 | y 1- y 2 | ≤ | y 1 |+| y 2 | q x 2 + y 2 1 + q x 2 + y 2 2 | y 1- y 2 | ≤ | y 1- y 2 | . The Lipschitz constant is 1. ii. f ( x , y ) = | y | satisfies the Lipschitz condition. We have f ( x , y 1 )- f ( x , y 2 ) = | y 1 |-| y 2 | . From the equality y 1 = y 2 + y 1- y 2 , it follows that | y 1 | ≤ | y 2 |+| y 1- y 2 | and | y 1 |-| y 2 | ≤ | y 1- y 2 | . From the equality y 2 = y 1 + y 2- y 1 , it follows that | y 2 | ≤ | y 1 |+| y 1- y 2 | and-| y 1- y 2 | ≤ | y 1 |-| y 2 | . 1 Putting it together,-| y 1- y 2 | ≤ | y 1 |-| y 2 | ≤ | y 1- y 2 | or || y 1 |-| y 2 || ≤ | y 1- y 2 | . This proves the Lipschitz condition. The Lipschitz constant is 1. iii. f ( x , y ) = √ | y | does not satisfy the Lipschitz condition. It is sufficient to consider a particular case y 2 = 0. Then f ( x , y 1 )- f ( x , y 2 ) = p | y 1 | and | f ( x , y 1 )- f ( x , y 2 ) | | y 1- y 2 | = 1 √ | y 1 | The right-hand side is unbounded for y 1 approaching zero, which shows that the Lipschitz condition cannot be satisfied. iv. f ( x , y ) = | y | / x for x ∈ [- 1,1] does not satisfy the Lipschitz condition. Again let us consider a particular case y 2 = 0. Then | f ( x , y 1 )- f ( x , y 2 ) | | y 1- y 2 | = 1 | x | The right-hand side is unbounded for x = 0, which shows that the Lipschitz condition cannot be satisfied. (b) Prove that the function f ( x , y ) =- p | 1- y 2 | does not satisfy the Lipschitz condition and find two different solutions of the initial-value problem y ( x ) = - p | 1- y 2 ( x ) | y (0) = 1 (1) on the interval x ∈ [0, π ]....
View Full Document

Page1 / 9

Lipschitz condition - Math 128A Spring 2002 Handout # 26...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online