ImprovedEuler

ImprovedEuler - Improved Euler’s Method Euler’s method...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Improved Euler’s Method Euler’s method was a good first start at approximating solutions to differential equations that we cannot solve. The error (i.e. the difference between ˆ y ( x ) and y ( x ) at a particular x-value) is at most a fixed constant times the step size h . So by halving the step size we can expect to reduce the error by roughly half. The following numerical scheme is an improvement over Euler’s method in that the error is at most a fixed constant times h 2 . This means that by halving h we are actually reducing the error by roughly a factor of four! Improved Euler We will again assume our IVP has the form y = f ( x,y ) , y ( x ) = y and we will again divide the interval [ x ,x + α ] into N equal parts each of length h = α/N so that the points x k = x + kh are equally spaced in the this interval. Now integrate our differential equation form x k to x k +1 to get Z x k +1 x k dy dx dx = Z x k +1 x k f ( x,y ) dx ⇓ y ( x k +1 ) = y ( x k ) + Z x k +1 x k f ( x,y...
View Full Document

This note was uploaded on 03/03/2012 for the course MATH 4430 at Colorado.

Page1 / 3

ImprovedEuler - Improved Euler’s Method Euler’s method...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online