This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: The Laplace Transform We begin by defining a certain linear operator called the Laplace transform, which we will use to turn the problem of solving a second order differential equation into the much simpler problem of solving an algebraic equation. Definition The Laplace transform is the linear operator L defined by L [ f ( x )] = F ( s ) = Z e sx f ( x ) dx Remarks (1) Note that if we are given a function f ( x ) that we wish to transform, F ( s ) will only be defined at those points s where the corresponding indefinite integral converges. (2) We will only consider functions f ( x ) that are defined on x &lt; so that the integral in the Laplace transform makes sense. I Example Find the Laplace transform of the function f ( x ) = e ax . Solution From the definition of the Laplace transform we compute L [ e ax ] = Z e sx e ax dx = Z e ( a s ) x dx = lim b Z b e ( a s ) x dx = lim b e ( a s ) x a s b = lim b e ( a s ) b a s 1 a s = ( 1 s a...
View Full
Document
 '08
 staff
 Algebra

Click to edit the document details