differentialgeometry15

differentialgeometry15 - Comvosmsfions MGM K mm! H we’...

Info iconThis preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Comvosmsfions MGM K mm! H we’ have, now \QQJ‘ALA '\'\’\0\\_ 2 K g e3? (wk (QMSE)- 225:? [56- F2 H = :1 (EG—- F1) J mu; (Sven n‘xcfi Qormohe. {30? We. E3EG’QAA 6&3. E : <Xofl<o> e“: <XU,NU> F : <X03Kv> Q : Z<xusNV> 6—= <xhxq> ‘3: <X«,M\r> (AL wm‘v *0 see. MOD; Am AroyA same. geomekdc. impormm’fi‘on 'prom “Mat. Obsamoén‘on. TPS “as on ‘95 “is 3 one, 515?. 04: S €\\§?\‘CQ W39 QCBOVC. LEAVE Vie») 1? \"‘\ Ox new “SH: (DNA but o\€:C{~I\QA :p‘ we, PPQGQJA ’HAQ, MOBWKX [E F WL‘COM 0325?. PG \\ ‘ \DO'DIHvQ— AQQCnWC“ 0~né> 13V Rf) AQ‘Cif<\\'e. ‘9 905‘ “06 or “13(3le ALQervrC, A 430wa \S ‘mAtfin‘x’rL W 0‘ £of some ._5 two. @ 93% Con Wm 3N2. (x new in‘vgvvrghkn‘on “CDC CD RICA—o Pg V is e.\\§p’t{ (_ P ‘\b \239gbokc. \\ b KLQB>OL=>KLK1>O (DAG) KLKL<O ‘ ‘2, K? ‘5 Aegml‘ce‘ 19 b inAfiRR‘fl 03‘ “PDQ/“’5’ *Uf‘ns‘ 00* +0 \oz 521"“ ALQCnK‘nL, mamims ¥or q\\ in”) 'IXPC§>$O £0“ °~\\ “0 . \ @ Provosx’sion, 11C PeS “5 on e,\\‘\\>*ic. 'Pomx‘) 3 Some. flask bod/“30A V 0‘C \D ‘6. S 50 “MK-\— 0\\\ Voin’ts in \/ bdm 5m We. SWC SEQ. Opg TV"). 3 is: ‘Pes ‘6 cx k3?Q\"\DO\TQ Poinsf; ’vken emu: “Qibkborkooa \/ 0‘? 9 Conan Voirfi‘s on bo’dn 5CAe5 09 11,3“ PFOOC. SoPPoae; ‘\’\V\C&\' P = XLQO) = £03020), Then \ 1. XbNB —. XU U 4, xvv J» EQXW 0&1va um- XWV) \— Emu) . «(0, ) WMU‘L \\W\ u 1 (0,0350 H09!“ Kfl‘NCO‘tfi 1 fig mm V /\\'\2. heicgm’r 09 X050} oqg‘ -‘<\me_ "\5 Swan \ovb A= <x,\\\> = WWW o + <m>v ~r §<<XoooN> 01*3<*W>N>°" *(Kau)H>\l1-' > ’r URN) ~30 \oo5 Tmsbc‘s '“xwv‘em. ') JFm/\<:>Qj\\" Ck“ Q. IQ p is on e,\\§\>’vic Pdij 'eren 11:? i5 Pog‘lfive— 0“ fiasoefidg AQ‘CC‘AGYQ «AA “CU: We. SNML SEA 42)? q\\ :9 P is (x “figu‘bcfix‘g Pogfib amen KP {S Kn Ae-QCAKSVE. 0&5 +016 PFQS‘UW‘ Sirfgfib ‘Cor &‘F€Lre_vx\' \IQGDPS. For .5Mq,\\ moocbk by” 3 U32. Coca IbfiOPQ, onA “mesa obsmq’rions 9mm; M moH: L695 05> quK *0 Oxbubmpsro’x‘k erukiom <=> $907310 . we, see. her a L6 = Co La y La} 15 on «bBMQ‘m’fic. gumL <=> 7. €(U‘5 + (60‘) x- 36131 a TMKS if) Ox For \‘(Q0\o.(‘ QQchnH&\ echqu'QoV/X 520x" QC (,6. Exm?\e_. 00 we -\-oros o? muob’rx‘ofl a: F) 9 =0\ 0‘3?- cos QCCLH‘COS LL\ $0 :5 05\ &&§M?*O*CL Large, g=> 7. VCO‘Y’: cos uCa+<~cos UBLU“) = O or \ U £03237- ——; 3 "‘ Co: LL (0. + rcos 03% .1 wt COM {Dom MS A‘\§Egm\-\‘Q\ qwercm Sow um. (Cm 9‘ ‘02, sowaés wken cos Q>O? > 7 ® (Amer 030005? Vfimdpok AWQLROOS . Rem,“ *chk ogU<3 K5 a \‘me. o? coPVOA'UfK 4:) AMQLU‘JiD - ’MQ oL‘CQ. orfi wadywwum ww\ 3 \ vquafi + amv = xu‘ o» \ ‘ 1 om 0‘ + an)! r ’}\\1 L3 MU\\’:?\~3\\V\¢§ L\\ \03 \I\ <3an ‘03) Q‘) (NRA 50b H‘CLLHAB WU“) we, Sea-V OF LOTDKRC> HAL weinyf 57m QC“) qA’COflfiB <42 E — Q’F3ny 1.- eG’B du‘ CC’SF‘$GBL\I‘3Z:O EXowxp\e. On *ke, —\—oros o? (“mobsn‘ofl’ E: r" F: o G= (macaw so am May e. [V1635 LLQCM- Fuss w} - C(a’vr‘wyfiz] ()‘U‘zo or (WU. r CNH‘Lo‘aLQL (“A ow? r L050}o\1\=0 Or "‘ V (.O\+<‘C,O$Q~\[(l+ WU‘U‘L'O % , “ "‘ \ ‘ 3 \ r > 0";0 Of‘ \I\:O 00c; Nosfke. AeKOA' uskaé‘ we. mm\\.3 r\ CQAQA Hem cook.$ <7) We, obfiemoérmn “\Mofir F=~°=O In—cod') Cooré‘moéte, wNe—b am. “W65 0“: Lof‘ucd-ure, ’? L F=~°=o We. some C)wa 5? edok C0595 oJ‘L insifi‘g (3' Sd‘CqLQS (SC quoblfi‘on. X00 3 < “ (PC‘A €05 LL;CP («\s‘m uL, O) Xw = (- (PICASM wrm Losw, o) Xw = ( CP“ Lv\ cos q, CP“Lu\ sin LL‘@OV“(0\). 50 E = ‘m- F=O. G=(<x>‘>z+cuv‘>7;= lochL. wt osom\\u> assume, he: OLGA "\b poxmdfiltd b3 osflms’rk, so C: = 1. Tkos \ " (Psan 43‘ C05 “\- ‘ q) Loam Q = 2%. Xov X0 X00 .2 a CpcosbL. Q‘sinbL —q)5§r\ LL 0 59‘ o - WWW(«920m .- : —. CW‘. .. (95in UK. Q‘cos, % .. cp‘ 5;“ R \ - I ‘C ; 2?) (X03x031‘003 :— 5 q) LObQL cp‘s‘n q’ (p 035% O q) 0 L— &P‘ (~ QQ‘ sin u. Lobu. - C—V (N)an upcofiwL») —. — L C? -Qs‘mu (P‘cosu. ©“Lobu. \ . u ~ cywomsv— cum (P w 0 q)\ k?“ = -\-— (d k\)‘ (-— CW3;er ~ ‘Pq’ucosch * “We UN” sihzw-CQCP ((5%)) = xv‘cp‘l WP‘. Nostkc M)‘ as §\,\o¢\A \ooK ‘CowachC‘l. From gsoof o\c§ homework he gomq’mce o? 0&8“? =(CPCQ‘W5‘3) W: = \w—w ((Q‘3‘- 0W) 2 K since. C(QAW is unfi weed. Me Know-5 ‘\'\'\03V ’\‘\'\€, (DOPAQACQY‘C CON (5 062, “has <5c CuNOGWPQ; here“ +00: we um come, a? wi‘dn 0» \OQNVU‘ UQVefaf2§0n ‘Qor K. Soxfifle. Woes” (9‘1 * “wt 5 4.) 50 CXKWUEnSYCcQfiN—S w.(‘.\. \J) UJL 36? ac?‘ C?“ * AVA)“ =OX or cp'cfi‘;-u\2‘uv“ Tkos‘ VQNOMJXVKDA M063 COR b¥m¥ (J—Q‘O‘bscoxfi CU‘VOGVUPQ (o \9 (MA oaks {1C3 q)“ = _ KOCQ - @ byzva ofe, “\Me, s§\o\'10v\5 0? 5MB 0.0.5.? K :+/_\_ (9“:‘(9 CPLJ\:5§V\\I 0 £05 \I \PGA :- (.05 \J or sir“, s Ker-O CP : COCA: ON *b ‘ Lofib or‘ (ASWAAEI‘ ( [9&0va \\ 1"P [or-"fl. C9 7' (9613‘ CD229] \ 1* Lol\\ \oz. 0~ \nomzuoor‘é exercisa *0 work 00* a \otw gwmmekdzcfin‘on ’90P *k{5 §0V$cxce Exmfle, $UPC¢LQ5 (Adda are, firoxpks o? £0n€3fions \n (.0913 . XLUN\ = CUNWWONW Q 1V5 Means ’“Ao‘k' 2- a K 3 5133i ; \Wuo‘Aw “‘ kw EC“? UMva ' 1n \Dof*{(.0\ck(‘) we, see. qufr MAC 5%“ 04: \4 {5 03an ‘03 5&2, AeA—ecmx‘mm’? O41 Hm. “665(0wi moéfl‘? x M00 M00 H : \«W m ) 3m\\\v\o> 0: H403? We, \’\€J9&‘mr\ omA “ma. 664.008 S3006. o. Meflsfcxx £06m 052, @L\ak\.e_é\- ’5.“ xmflv 6% on 003 axmdczon '3], .\,\,\e_ beconA éuwo‘kue 059 \n in AMA A§M¥~on ...
View Full Document

Page1 / 17

differentialgeometry15 - Comvosmsfions MGM K mm! H we’...

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online