{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 219F - M E T U Department of Mathematics Math 219...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M E T U Department of Mathematics Math 219 Differential Equations FINAL 12.01.2012 Last Name 1 Sigflﬁture 1 Section Name - Student No: Duration i 120 minutes 4 QUESTIONS ON 6 PAGES TOTAL 120 POINTS —i SHOW YOUR WORK (5+15 pts) 1. (a) Verify that yﬁt) : t is a soiution of the equation tgy”—t(t+2)y’+(t+2) =0, we. 3.24:- 3*; 3‘35 '3"; a 43. o we Le+1). 4+ Ltrkaﬁwrxa Tﬁ 0\ ﬁOLUA—‘Oh ‘ \$0 (b) Using the method of Reduction of Order, ﬁnd the general soiution of the equation tgy" —t(t+2)y’+(t+2)y M2153, 25> 0. Identify the complementary solution and the particular solution of the equation. ? at“ W“ ‘3”;2o’+ev’ 3 (lVi‘V'EVH) wt" C£+Z> (wed—AH) + L£+z>tvg2t EVN+L1432 ezceﬂ) V/ﬂg—es ) {EVI/Wztgv/ml'tg/ Vij :2“ Léﬁ wavy ﬁniém UL ﬁv” cm .i. 5H: mlﬁLLd-zzl / u, ill—Pvt) DArULw 2 (14+5+7+14 pats) 2. Let A: [ 3 mi] . (21) Find a fundamental matrix for the system x’ w AX. Ae€CAwﬁi>\$ ‘ (L NW any"? I”, I W: mezbﬁmﬁ’Z) *3) “z; '7\ w—l :_.Oj7\—w~“+l 3 rgwﬁ L0 \ wag, g wlxl W31 '1 % éfgzw ’ I [3 -w\$ m) % ‘ X I“— e’ 1 cm 1 “I 1-,; 7\::-—l 3 “l 331"§>;.3G} E); Hg 3 w\ {2 wt \ J% (3 , A ék .Jt Funclcxmenlal m0x+ﬂx Wbtj: at 3C2, (13) Which of the following phase portraits does the sygtem in part (a) have? :5 A “:33...” M><O \\.'f-.\'\\.\\ §\\\K\\i §\K\\\\\V §\V\\\\\R\V ' (L WR3EfyljC;B;Xmﬂawm)[:;%;ix;liﬂgl X5“ (32 3 3/2 .._ - i ) 1:, E ] Lm]"i* 3 ) ][°]:W-£w" “M C2, “’ L ”\ 1 ‘ t W , 3 “b “L *‘ #4: w , . m X; 3/ (3:17 33 WV; L éeﬁw ée (d) Use the method of Variation of Parameters to ﬁnd the genera} solution of x’ m Alibi—gt)= Where g(t) r: ( i: > 6"”, by using the fundamental matrix you found in paEt (a). U) Xvwwim w:— w‘cdi‘ﬂww Va] . U4) . W U55 {4 2:. A—LPLk) LVL‘b)£\/t 1:: AX?—\'3(:{:B 1%.] ' "1(3Lt) ’ a 3-35 :1 at? U/ m W F“ Wﬂﬂ[vd]w3ﬁﬂ’ [W]332;€E a: [Ea _ O ‘01 r z: m 3£38 “39’ ]~;Ll I v] ai , ‘5 (1 WI + 3 Mt Mr 0 [ ' 6” t] ( KP;L1JU:)[JC]W 3kg 0) 6 xﬁ‘ﬂ _¥ KP K;C\ >4 “)t "2/ “:6, w¢[:\]+ [email protected] wclaﬁLE'lJsze-w 3 SEEK. 4 (20 pts) 3. Use Laplace transform to solve the initial value problem 9” +19 = Mt) + 5(1' - 3), W) W 0, KJI(0)=1- ” __ e? . Jr Vang“ } i§é+3r§~?+e’ ' L6" 3 N. x. W25 "WES Sign/:1: Q’s «ft-EL -25 -335 (Si—143%: ‘3’;— + «2 +| 5 “.25 W35 3 \ GEL a JV 2 + / 5&5th 32“+\ 32”“ 2 Ag rewa— ‘..2. 5 : ﬂaw-Jr '32“+\ # EBCE’Z'“) \$(§~H m A+%=_0; are) Awb was 6.. \/- e’ w" {32* + “2*\ Mk 2‘44 “" 5 5 +1 (3 + 5 CO 300*?) -+ v13 tic) am C£~3>~+\$¥n41 a ,— uluc) .__ Ulla 0'! (20+10+10 pts) 4. Consider the boundary value problem (BVP) agate, t) m 611, 8332 m (2t+1)még , u(0, t) = u(1,t) = 0. (a) Apply the method of Separation of Variables to obiain the general soiuiaion of the given BVP (IncEude a1} the derivations in all possible cases). .m/ ’1 7"“ w may): XLxFVLk) I UL“ :- >< \} We W X \ ” 3T” , i X (2_«t—:~+~\ ﬁgﬂ r; _ W “- >4 T: c1t+\)><T J X W. T ><”+r>\><-.-:O, C”%+‘>’TJ*“T;O oXW—O “03:0 {'3 is); X(O>TL '” 3 ML‘ ~ 5-3 XLOBO ucwc): XLUTL“: W J ——~ 0 XLO):O XCU—m e 50:10 ><I\W+"7\X:~O} If} Xﬂa‘xﬁ’b f X835 \ *0 , X 5W0: A M O W Ca 5: 6L M 6 (b) Using part (a), ﬁnd the solution of the given BVP which satisﬁes u(:c, O) = sin (37m) + 751:1 (57m) . m n"~ 7 an S1 MLV‘WX) m3: Chm?) 1£®P “#315* 53h€3ﬁ>k3 %‘1‘5VHL5WX) __._ u (xx/o) :1 ) __z WSW—272, ""251113 u (wt) :2 (ch +l> ifncg'wy) 4r r? mama) sfngmj (c) Find the solution of the problem 82 8 2%” m (2t+1)5—E, v(0,t) = 0, v(1,t)= 1 which depends on :0 only. \fCX)bb> ‘3" '(LCK) 1 - .._ \[xx :27?\CX3) kao “3.53 1C frL x) -_—, Vxx :- £2364“)th l J? (>43 7:134 «C Lx5m- Cx KW+LZ :: Q X ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

219F - M E T U Department of Mathematics Math 219...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online