{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Cartesian Coordinate System

# Cartesian Coordinate System - Cartesian Coordinate System...

This preview shows pages 1–2. Sign up to view the full content.

Cartesian Coordinate System Each point in the plane is specified by the perpendicular distance to the x-, and y- axes. P(x, y) Polar Coordinate System Each point in the plane is specified by the radial distance from the pole (or origin) and the angle to the horizontal axis.P(r, q) A scalar is a physical quantity that possesses only magnitude. A vector is a physical quantity that possesses both magnitude and direction. Which are scalars and which are vectors? Time Acceleration Force Speed Distance Temperature Mass Velocity In the Cartesian Coordinate System, A = A X i + A Y j , where A is the vector quantity, A X and A Y are the magnitudes of the rectangular components in the x- and y-directions, respectively, And i and j are the unit vectors in the x- and y-directions, respectively. In the Polar Coordinate System , A = A < q ,where A is the vector quantity, A is the magnitude (a scalar quantity) and q is the angle (with respect to the x-axis) note: A = | A | = magnitude of A Vectors should be written in rectangular form. Cannot add or subtract vectors directly when written in polar form. Add the x- and y- components independently.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern