HW#4_Sol - ------ ----- ------ % 01001 9 9 Invalid Valid...

This preview shows pages 1–2. Sign up to view the full content.

EE 367 Introduction to Microprocessors (Fall 2011) Solution Set, Homework 4 I. Meaning of binary words A. Chapter 1, Problems: 1.14, (a) 65536 1.14, (b) \$0000 -> \$0FFF 1.19, The ASCII codes are listed in order, from bottom to top HEX ASCII Binary \$59 Y %0101 1001 \$2F \ %0010 1111 \$35 5 %0011 0101 \$32 2 %0011 0010 \$3D = %0011 1101 \$58 X %0101 1000 1.20, Set the top bit for even parity in the ASCII codes below HEX ASCII Binary \$59 Y %0101 1001 \$AF \ %1010 1111 \$35 5 %0011 0101 \$B2 2 %1011 0010 \$BD = %1011 1101 \$D8 X %1101 1000 B. Number conversions a. Express the following binary numbers in HEX format 1) %11010001 A: \$D1 2) %00101011 A: \$2B 3) %01011010 A: \$5A 4) %10101010 A: \$AA b. Express the following HEX numbers in binary format 1) \$3F A: %00111111 2) \$A8 A: %10101000 3) \$2B A: %00101011 4) \$69 A: %01101001 C. Binary Arithmetic Problems Decimal Meanings Flags Straight Signed N=1, Z=0, C=1, V=0 1111- Binary 1) % 01110 14 14 + % 11011 + 27 + (-5)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ------ ----- ------ % 01001 9 9 Invalid Valid Decimal Meanings Flags Straight Signed N=0, Z=1, C=0, V=0 -----Binary 2) % 11010 26 (-6) - % 11010 - 26 - (-6) ------ ----- ------ % 00000 0 0 Valid Valid Decimal Meanings Flags Straight Signed N=1, Z=0, C=0, V=0 ---1-Binary 3) % 11101 29 (-3) - % 01011 - 11 - 11 ------ ----- ------ % 10010 18 -14 Valid Valid D. IEEE floating point 1.30, +2.510 = 10.12 10.12 = 1.012 * 21 M = 01000000000000000000000 E = 1+127 = 128 = 100000002 S = 0 Thus, +2.5 expressed in single-precision floating-point format is equal to: 0 10000000 01000000000000000000000 II. Chapter 4, Text Problems: 4.2, 4.11 4.11, The Accumulators, also called the General Purpose registers or registers A and B. 4.12, One byte = 8 bits, therefore, a 4 byte word size = 8 bits/byte * 4 bytes = 32 bits of word size...
View Full Document

This note was uploaded on 03/06/2012 for the course ENGINEERIN 305 taught by Professor Arm during the Spring '10 term at Wisconsin.

Page1 / 2

HW#4_Sol - ------ ----- ------ % 01001 9 9 Invalid Valid...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online