Solutions_for_HW4

Solutions_for_HW4 - y z -212} wan) [21 -13] 6E1] 2 2 24E] 2...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y z -212} wan) [21 -13] 6E1] 2 2 24E] 2 2 “ 340(15)(19.5) " 6(30)(106)(0.2485)(39) (150/12)(19.5) +———~————-—g——.——-———[2(39)(19.52)-19.53 493] = —0.1027 in Ans. 24(30)(10 )(0.2485) y [19.52 +152 —392] % difference :4 W000) = 5.01% Ans. —0.0978 4-13 I = 1-15(6)(323) =16.384(103) m4 From Table A—9-10, beam 10 Fa2 =—-—— Z+ yC 3EI( 0) Fax 2 2 yAB:6EIZ(Z “‘35) flfl=fl(12_3x2) dx 6E1] Atx=0,d:1f =6A “ Fa]2 fl fl 6EIZ 6E1 FaZI 6E1 With both loads, _ F612] _ Fa2 6E1 3E] 2 2 : _f_‘l_(3[ +200 : __fl03g’29_2w_3. 6E1 6(207)10 (16.384)10 At midspan, _2Fa(Z/2) KEY _ _3_ M2 2 _3L 400(300)(5002) 6E1] 24 E] 24 207(103)16.384(103) 9A Yo =_6Aa:- yo = (1+a) [3(500) + 2(300)] = —3.72 mm Ans. =1.11mm Ans. yE 2 4-14 1 = 33424 —1.54) = 0.5369 in“ Chapter 4 - Rev B, Page 9/81 4-100 Note: When setting up the equations for this problem, no rounding of numbers was made. It turns out that the deflection equation is very sensitive to rounding. Procedure 2. T 1. Statics. R1 + R2 = wl l l (1) w ' I I I I I I I I I I i i i ‘ ml. R21+M1=—:—wlz (2) “<1 I ‘ i 1 R2 2. Bending moment equation. R 1 2 M = Rlx—wa -M1 E19791 = lax2 — l W3 - Mlx + C1 (3) dx 2 6 1 3 1 4 1 2 EIyz—éRlx —wa “EMIIXI +C1x-l-C2 EI= 30(106)(0.85) = 25.5(106)1bf-in2. 3. Boundary condition 1. At x = 0, y = — Rl/kt = — rel/[15006)]. Substitute into Eq. (4) with value of E1 yields C2 = — 17 R1. Bounan condition 2. At x = o, dy /dx = — M1/k2 = — Mt/[2.5(106)]. Substitute into Eq. (3) with value of E] yields C1 = —— 102 M1. Bounde condition 3. At x = I, y = — R2/k3 = - Jet/[2.00 06)]. Substitute into Eq. (4) with value of E] yields 42.751?2 = —6-Rll *awl ~§Mll —10.2Mll—17R1 (5) Equations (1), (2), and (5), written in matrix form with w = 500/12 lbf/in and Z = 24 in, are 1 1 0 R1 1 0 24 1 R2 = 12 (103) 2287 12.75 ——532.8 M1 576 Solving, the simultaneous equations yields R1= 554.59 lbf, R2 = 445.41.591bf, M1 = 1310.1 lbf-in Ans. For the deflection at x = [/2 = 12 in, Eq. (4) gives Chapter 4 — Rev B, Page 69/81 6U = 0 aMA The bending moment at an angle 6to the x axis is M=MA~E(l—cose) 6M =1 2 EMA The rotation at A is 2/2 6A: 6U =-—L [M W Rd6=0 aMA E1 0 (MIA Ir/Z Thus, ~1~ J-[MA —E(l—cosfi)](l)Rd6 = O ::> (MA —E)£+E = 0 E1 0 2 2 2 2 or, MA = up -2) 2 72‘ Substituting this into the equation for M gives M = fl[cost—Z—J (1) 2 it The maximum occurs at B where 6 = 7r/2 Mmax =MB =~f§ Ans. 7r (b) Assume B is supported on a knife edge. The deflection of point D is a U/é’F. We will deal with the quarter-ring segment and multiply the results by 4. From Eq. (1) 6M =—I:(COSH—~2;] E 2 72' Thus, ir/2 321/2 2 3 5D=§E=i MafikdezFR [(0056—2) d6=FR {1—3 61? E10 aF E10 27 E147: 3 = FR (723-8) Ans. 47rEI 4-104 PcrzCfi:EI l 4 I l( 4-d4)=flD (l—K4) whereK=i 64 64 D 2 4 Per_C7Z'2E 7TD (1__K4) l 64 Chapter 4 - Rev B, Page 74/81 2 1/4 D: “364—1111‘?‘ Ans. n“ CE(1—K ) 4-105 A:%D2(1—K2), I=—6’—;—D4 (14639:?)4 (1—K2)(1+K2), WhereK= d/D. The radius of gyration, k, is given by 2 k2=—I—=P—(1+K2) A 16 From Eq. (4-46) P sz2 5312 _““L“T=Sy——T§_=Sy"—TT_—“7_ (7r/4)D2(1—K) 47: k CE 47: (D /16)(1+K )CE 45212 132 l—K2 7: D (1+K )CE 22 _ 2 7rD2(1—K2)Sy=4pcr+w 77(1+K )CE 4p 45212 (1—K2) “2 D: ———~—————~°‘ +~————-———-——————y [flSyO—Kz) 7r(1+K2)CE7r(1—K2)Sy] 1/2 522 zSy(1—K) 7r CE(1+K) 4106 EM —0 075 800 ————-r__.__*0‘9 F 05 —0 :> F ~1373N ‘ (a) A— a ) 0.92+0.52 Bo( - )— 30‘ Using nd = 4, design for For = nd F Bo = 4(1373) = 5492 N Z: 0.92+0.52 =1.03 m, Sy =165 MPa In-plane: 1/2 3 W k = = [b12212] = 0.288711 = 0.2887(0025) = 0.007218 m, C =1.0 =1_'°3_.=142.7 l 75 0.007218 [1] g 2z2(207)(109) “2 21574 k 1" 165(106) ' Chapter 4 - Rev B, Page 75/81 4-112 Loss of potential energy of weight = W (h +6) Increase in potential energy of spring = ék62 W (h +6 ) = éké‘z or, 52 —3£Z6—-2£:h = o. W: 301m; k=1001bf/in,h = 2 in yields 62—0.66—1.2=O Taking the positive root (see discussion on p. 192) am =—;-[0.6+./(—0.6)2 +4(1.2)] = 1.436 in Ans. FmX = k 5mm = 100 (1.436) = 143.6 lbf Ans. 4-113 The drop of weight W1 converts potential energY, W1 h, to kinetic energy—{Er}? . 2g Equating these provides the velocity of W1 at impact with W2. Wlh = of :> 171 =t/2gh (1) 2 g Since the collision is inelastic, momentum is conserved. That is, (m1 + m2) 122 = m1 711, where 222 is the velocity of W1 + W2 after impact. Thus W1+Wz W1 022—221 2 '02 g g _ W1 Wi+Wz til: W1 42gb (2) Wi'l'Wz The kinetic and potential energies of W1 + W2 are then converted to potential energy of the spring. Thus, fit—WINE v§+(I/V1+W2)5=lk52 g 2 Substituting in Eq. (1) and rearranging results in W1 + W2 5 _ 2 WE 12 z k m + W2 k Solving for the positive root (see discussion on p. 192) 2 2 =1 2WI+W2+ 4(WHW2] +8 WI fl (4) 2 k k m+W2k 52—2 0 (3) Chapter 4 ~ Rev B, Page 79/81 ...
View Full Document

This note was uploaded on 03/07/2012 for the course MAE 3090 taught by Professor Dr.yang during the Spring '10 term at FIT.

Page1 / 5

Solutions_for_HW4 - y z -212} wan) [21 -13] 6E1] 2 2 24E] 2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online