lctr07_s12

lctr07_s12 - 2.5VectorCrossProduct

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
  § 2.5  Vector Cross Product Multiplication of a Vector  by another vector : there are  infinitely   many ways  that we could  define what it means to multiply two vectors together.  Only a very small number of such  multiplication operations yield something physically meaningful.  Cross Product :   a specific multiplication operation that yields a  vector   perpendicular to the plane defined by the two vectors defining the cross.  It is useful for  finding  “moment of a force”,  which measures the  extent to which a force tends to impart  rotation .
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
θ  is the angle between the tails of vectors  A  and  B    ( 0°  180° )  and  u  is a  unit vector that is perpendicular to the plane containing   A  and  B  as determined by the  right-hand rule   (wrap fingers from  A  to  B ).   u AB B A ˆ ) sin ( = × The vector cross product is  defined to be :
Background image of page 2
special commutative law A   x   B  =  -   B   x   A scalar multiplication a  ( A  
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/15/2012 for the course EMA 201 taught by Professor Witt during the Spring '08 term at Wisconsin.

Page1 / 10

lctr07_s12 - 2.5VectorCrossProduct

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online