{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 02_TimeValueMoney - CHAPTER 2 Time Value of Money...

Info icon This preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
    2-1 CHAPTER 2 Time Value of Money Future value Present value Annuities Rates of return Amortization
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-2 Time lines Show the timing of cash flows. Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the  first period (year, month, etc.) or the  beginning of the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 I%
Image of page 2
2-3 Drawing time lines 100 100 100 0 1 2 3 I% 3 year $100 ordinary annuity 100 0 1 2 I% $100 lump sum due in 2 years
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-4 Drawing time lines 100  50  75 0 1 2 3 I% -50 Uneven cash flow stream
Image of page 4
2-5 What is the future value (FV) of an initial  $100 after 3 years, if I/YR = 10%? If a deposit is made into an account TODAY  earning compound annual interest, how much will  this be worth at the end of three years? Finding the FV of a cash flow or series of cash  flows is called  compounding . FV can be solved by using the step-by-step,  financial calculator, and spreadsheet methods. FV = ? 0 1 2 3 10% 100
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-6 Solving for FV: The step-by-step and  Formula  methods After 1 year: FV 1  = PV (1 + I) = $100 (1.10)       = $110.00 After 2 years: FV 2  = PV (1 + I) = $100 (1.10) 2       =$121.00 After 3 years: FV 3  = PV (1 + I) = $100 (1.10) 3       =$133.10 After N years (general case): FV N  = PV (1 + I) N
Image of page 6
2-7 Future Value Calculation FV N  = PV (1 + I) N
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-8 FV Problem If you deposit $10,000 in a bank  account that pays 10 percent compound  annual interest, how much would be in  your account after 5 years? Draw the cash flow line: Solve Using the FV formula:
Image of page 8
2-9
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-10 Solving for FV: The calculator method Solves the general FV equation. Requires 4 inputs into calculator, and will  solve for the fifth. (Set to P/YR = 1 and  END mode.) INPUTS OUTPUT N I/YR PMT PV FV 5 10 0 $16,105.10 -10,000
Image of page 10
2-11 Excel Solution Financial Functions
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-12 PV = ? 100 What is the PRESENT VALUE (PV) of  $100 due in 3 years, if I/YR = 10%? Finding the PV of a cash flow or series of  cash flows is called  discounting  (the  reverse of compounding). The PV shows the value of cash flows in  terms of today’s purchasing power. 0 1 2 3 10%
Image of page 12
2-13 Solving for PV: The formula method Solve the general FV equation for PV: PV = FV N  / (1 + I) N PV = FV 3  / (1 + I) 3      = $100 / (1.10) 3      = $75.13
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2-14 Solving for PV: The calculator method Solves the general FV equation for PV. Exactly like solving for FV, except we  have different input information and are  solving for a different variable.
Image of page 14
Image of page 15
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern