Lecture_27_notes

# Lecture_27_notes - ChE 37 4—Lecture 27—Navier Stokes...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ChE 37 4—Lecture 27—Navier Stokes Equations 0 Equations . . . a .. — Continuity Equation: 3—: + V - p2) = 0 e Or: g? + 96% + 9%? + 854;” = 0 (Cartesian) — Or, for constant ,0: V - r7: 0. — Momentum: 5393? + V - 2 —VP — V - ’T + pg'. — Using the product rule and applying the continuity equation: pg—iupt-W: —VP—V-T+p§. — For constant density: pg—‘g -— pa- vv = —VP + uv227+ pg: — This can be rewritten with the material derivative as: p%’ 2 —VP + Mv217+ pg: — THIS IS THE NAVIER STOKES EQUATION governing ﬂuid ﬂow, which is paired with continuity. >u< Four equations (xyz momentum and continuity) in four unkowns: u,v,w,P). # SEE PAGE 450 of your book for this equation in expanded form. 0 Boundary Conditions — Given velocity at inlet or outlet or far ﬁeld: 112-”, now, 1100. 811 — m = 0 at symmetry points like a pipe centerline. —— v = 0 at walls. 0 Initial Conditions — For unsteady ﬂows, also specify the initial conditions 77(Cc,y, z), P(\$, y, z). o Analytic solutions available only for laminar ﬂows in simple geometries. o Solve the equations by reducing dimensions and cancelling terms. 0 Example: Barometric Equation: no velocity ﬁeld a VP = epg‘i. 0 Example: Couette Flow: Unforced ﬂow between parallel plates, one stationary, the other moving at a ﬁxed speed. 0 Example: Flow down an inclined plane. 0 Example: Given a 2—D velocity ﬁeld7 compute the pressure ﬁeld: Book Example 9—13. Ml‘tk) M Codi” l/ 4 f. /\7 to 2’; 4 Marat? Q’av 3’ — «N; ’ ’3” “3% "37' “3‘2; PU p :3’0 "Du *9 “a? J n . “ __ “.33 4: “"13: .. COM / /U f V j / ‘73" "37‘ “9,2 ‘2) , r3 'J ,g t ._ I“ d... www- L" 4 vamw : Pi * W w v 3:” ’2‘ Coal /uw‘!‘ f” ’2) v .- w ,. ! M ___.—.. 1L V' '1 —. J F 4‘ m \7‘ VJ ‘4. (5,, «’6 75 v E) a: BOWQV (w 43‘ {1:33 Mummmmwm W“ I a ) 16L ‘4” j: I f,.,..rg,- “ﬂ . ,, égom WWIJV 63 MM, “J “ é; ’ é "’ a . \);n was} I 3'", q} , 44 eynmmlr/ {70 134*» {/er 53??? [gmh’zﬂ *4 ﬁx éy.o\~.~( }{‘. .—v-’>- yam/(o m wx 1‘“. u: o a" “’“k [w SW” 3 E79 “’9 it iw W ‘ ram/zaml'J’W'é CA5, “‘- 1 “be 3! ' 0,. 7C , rwu,?~'«6‘}“‘“ ‘ / D 7: «-..L F 4 "D (a? 1 9 * film§ + l (WW/k - I'D . 0 m- ‘ 91M , '1 . »/7, 4) P2» 3.: :0 A» no, 4M.wa m» Imam ’7‘/ “‘7. w/ . ,. Vz; ,ru rm” 1'2”; u=97530 , a! w 4% \/: H [A 7" U Riv}. a r H i a: 7‘ ’ TECDﬂL— "’3';- F L“) :‘xéi’wy ' ‘ “3‘ x ’ tip-«pm 07 i 3:? 7‘“ u 7 4 ﬁx AL 7.7.1 1/ (“D (4:35 :9 6’7 d7 "‘9 “j, ¢o\$9{‘/+ g7 6&19 (7’ \$6) Eggnmpb W \$70!: Ext—«yd 51.]; -/-=> (M P x - g S ( 1 r7 / {*‘(DH‘KP‘ i/IJG’KJ (/4: 470 la .2 s? 1 "\ ﬂ.) 7) I 3795p I r :‘ /(ﬂf£ a Vi; A V 17 + :07? 1M 7” 7“ M :m . \f -. 0 O 4; 4/M+b) O 0 ’9? f - 2R1, {HUM/{4 *3” T)[>‘/‘/’)” 'ﬂbéy ﬂffp/ + 6’64) " 0' 0/ Z \ 2:“; iii/(7“) ":1 “#éqx “PAL: r”? 7 ( 047 AM ’VP {1 7M‘ (7“ ...
View Full Document

## This note was uploaded on 03/11/2012 for the course CHE 374 taught by Professor Davidlignell during the Fall '12 term at Brigham Young University, Hawaii.

### Page1 / 5

Lecture_27_notes - ChE 37 4—Lecture 27—Navier Stokes...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online