{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Tema21 - 21.22 Here is a VBA code to implement the...

This preview shows pages 1–13. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
21.22 Here is a VBA code to implement the multi-segment trapezoidal rule for equally-spaced segments: Option Explicit Sub TestTrapm() Dim n As Integer, i As Integer, ind As Integer Dim label As String Dim a As Single, b As Single, h As Single Dim x(100) As Single, f(100) As Single 'Enter data and integration parameters ind = InputBox("Functional (1) or Tabulated (2) data?") a = InputBox("Lower bound = ") b = InputBox("Upper bound = ") n = InputBox("Number of segments = ") h = (b - a) / n If ind = 1 Then 'generate data from function x(0) = a f(0) = fx(a) For i = 1 To n x(i) = x(i - 1) + h f(i) = fx(x(i)) Next i Else 'user input table of data x(0) = a label = "f(" & x(0) & ") = " f(i) = Val(InputBox(label)) For i = 1 To n x(i) = x(i - 1) + h label = "f(" & x(i) & ") = " f(i) = InputBox(label) Next i End If 'invoke function to determine and display integral MsgBox "The integral is " & Trapm(h, n, f()) End Sub Function Trapm(h, n, f) Dim i As Integer Dim sum As Single sum = f(0) For i = 1 To n - 1 sum = sum + 2 * f(i) Next i sum = sum + f(n) Trapm = h * sum / 2 End Function Function fx(x) fx = 0.2 + 25 * x - 200 * x ^ 2 + 675 * x ^ 3 - 900 * x ^ 4 + 400 * x ^ 5 End Function 21.23 Here is a VBA code to implement the multi-segment Simpson’s 1/3 rule algorithm from Fig. 21.13 c : Option Explicit Sub TestSimpm()

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Dim n As Integer, i As Integer Dim label As String Dim a As Single, b As Single, h As Single Dim x(100) As Single, f(100) As Single 'Enter data and integration parameters a = InputBox("Lower bound = ") b = InputBox("Upper bound = ")
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 16

Tema21 - 21.22 Here is a VBA code to implement the...

This preview shows document pages 1 - 13. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online