{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

tutorial4_sol

# tutorial4_sol - DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF...

This preview shows pages 1–2. Sign up to view the full content.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF HONG KONG MATH1211 Multivariable Calculus 2011-12 Second Semester: Solution to Tutorial 4 1. fg = e xy x sin 2 y . D ( fg ) = [ (1 + xy ) e xy sin 2 y xe xy ( x sin 2 y + 2 cos 2 y ) ] . On the other hand, g Df + f Dg = x sin 2 y [ ye xy xe xy ] + e xy [ sin 2 y 2 x cos 2 y ] = [ (1 + xy ) e xy sin 2 y xe xy ( x sin 2 y + 2 cos 2 y ) ] . Also, f ( x, y ) g ( x, y ) = e xy x sin 2 y , D ( f g ) = [ xye xy sin 2 y e xy sin 2 y x 2 sin 2 2 y x 2 e xy sin 2 y 2 xe xy cos 2 y x 2 sin 2 2 y ] , and g Df f Dg g 2 = x sin 2 y [ ye xy xe xy ] e xy [ sin 2 y 2 x cos 2 y ] x 2 sin 2 2 y = [ xye xy sin 2 y e xy sin 2 y x 2 sin 2 2 y x 2 e xy sin 2 y 2 xe xy cos 2 y x 2 sin 2 2 y ] . 2. F x = 3 x 2 y 2 2 yz 4 + ze xz , F y = 2 x 3 y 2 xz 4 , F z = 8 xyz 3 + xe xz . (a) F xx = ∂F x ∂x = 6 xy 2 + z 2 e xz , F yy = ∂F y ∂y = 2 x 3 , F zz = ∂F z ∂z = 24 xyz 2 + x 2 e xz . (b) F xy = ∂F x ∂y = 6 x 2 y 2 z 4 , F yx = ∂F y ∂x = 6 x 2 y 2 z 4 , F xz = ∂F x ∂z = 8 yz 3 + e xz + xze xz , F zx = ∂F z ∂x = 8 yz 3 + e xz + xz xz , F yz = ∂F y ∂z = 8 xz 3 , F zy = ∂F z

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}