{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mt2key - 7 Name K L’(1 MATH 108 Section 1 Second Midterm...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 7 Name: K L’ (1) MATH 108 Section 1 Second Midterm ‘ November 19, 2010 Answer all questions on these pages. If you need more space, write on the back of the previous page and indicate that you have done so. Since this course emphasizes the basics and rigor, your justification of an answer is more important than the answer -— so always give a clear and complete justification unless you are instructed not to do so. There are 7 problems on 3 pages. 1. In each part below, give the definition. (15), a. The composite of two relations. “I: R; A 9B CM g -9 C / “la/76¢! (L'CJIHFL‘SITQ‘ Safe“ 2(41‘)‘ ab ith/N—y/‘él? ’* 3 [{HC, (Kb/C) S j b. The restriction of a function. hi {'A—BE (imii 0 9A ,, Mm; Hut lama/4,, h) 013 S {:19 t {m’ I M! {3% (“um/f (1 c. Afinite set. . / A Set/5 704/756 1‘) A245 8 N If) A ’3» Wk] fiar'same kéfi/ 2. a. Give an example of a function f: N —> N that is onto but not 1-1. Justify your answer. (10) _ Lat {01): 7;) n" M’/ 107,1 / . . g 1( I5 mm; 5/401 Vflé 15/16 Magma/f VH/fil’) 45 not H We ’9’ . 2—>/ b. Give an example, if possible, of a denumerable collection of finite sets whose union is finite. If it is not possible, explain why not. W5 An 1%, ne/x/ S 7’46” 90%}! An I5 {in/fie ama/ ngu A" :51}, iinite 3 . For each of the following relations, indicate in the space below whether it is an equivalence relation and justify your assertion. If it is, and if 3 is in the domain of the relation, describe3/R and indicate how many distinct equivalence classes there are. (16) a ' / 4A a. OnR,nyiffx+yisaninteger. F. R’5"‘%‘fi/@K/W "? ‘2; :3, 62 /L b.R={(m,n)EZxZ:m-niseven}. T (eglriivii‘g i) V méz, rmmro Mm ¢ / 7W Wt: «02k = 2(4) we“ {toms‘yt'w‘ttva “‘>_Vm,n,peZ// If m—ncgj M017 n-,0=2/< m/Zn HEP 1/. . m—WM‘ T M5, Marl/N1 (M4))4‘UPF): m-P : 2)} 2K : ZKJ‘4k) ; I We” J {.va _’I I) 3 g 1 ‘0' E. l I I TWO 0(I5H/ld'i’ fight/g LIA/5,10; claggeg / Mia/flan \ 0W «ENG/w m {was 4. Let R be the set of real numbers. For r varying throughout the set of all nonnegative real numbers consider the sets Q = {(x, y) I x2 + y2 = r}. Then, prove that {Cr} is a partition of RxR. Note that the nonnegative real numbers are R+ U {0}. (12) f) W20, wnsitfaiV/fi)3 050793: o+r=r So (0, f7)6CY Moi +M/efqre Cricfi (LL) Conga/u CtrI Mo! Ch» I13 Cn/lcfl :CP 0K hf cnncrficqb, 9M; 5,1; (“Wicca ml (X,/44,)EC,/Z 714w viz—n}? -; r, 30 ftr Am! C — Y)2+%Z:f,_ I 2 Cfch m We know rgocr M42. meg/Lo 34w KM? 4: UV cf Pic/k curb/hug (>07) GKVK I , ,2+ 2 Let fax \/ / Hem /x,%)é(r My] KX/gg U r 2,1} C)’ V 90 E937 1‘50.» pMHHon e/YC 52x6? 5. a. Let A, B, and C be nonempty sets and let f: A —> B and g: B -> C. Indicate ifeach ofthe following is true or false and prove any that are true in the space below: (16) 3 a. If(got): A —> C is 1-1,then g‘: B -> C is 1-1. F 3, b.If(gof):A->Cisonto,thenf:A->Bis1-1. F. /0 c.If(gof):A-»Cisonto,theng:B—*Cisonto. T FDY‘ C: VLEC WL hWDW jkkA " (“/C\é:)°‘€ Siv‘te (3" $5 an’l‘O, Th3“ EBGB; (A,\>\é¥ an; (\o/CBéfl A“egim:i(°h ,L‘Q 9‘; Con/5ft)?! ‘1 The“ VceCjE’béB" (Raésqso a M, raw-“s 6. a. Prove that ifA is infinite and A Q B then B is infinite. (18) We domain/imam. A SSW/we P Mo! w? A is infinite, A Q 8 , Md, 3 i3 {in/1‘6 7 A W W 3...... .7: . ijm‘fie 5615 {5 #‘nffe' 6290, b. Prove that the set of irrational numbers is uncountable. m: m—fioma/{S MI‘OM ;\rfM/‘0MJ5 m” aQUH 6 EM 02/)1 : d) 7 Use Whaoéidlm :. MSMM: II :‘s'wwab/e II is n0+7cmfte SPACQ 77/ JZTT, 3771 f5 Infinite eel/echo” lffaHqujg Hfi E is JWMmafnlo/e +14% QUZI IS dame/we am we know Mai Hye Mm” 0% JUN 0 dis/oh" denumerable Set f5 p/em t men: 616 7. Prove Theorem 5.21: The union of a finite pairwise disjoint family of denumerable sets {Aiz i = 1, 2, 3, . . .n} is denumerable. (12) M58 pMI. [9(1): ,4; 2 ,4, fl/Wmie/mb/e Afifh/mF/v’on Kw K 453mm: plk] A,“ : .U Ac‘ (/4141 1:! 71,3 7575+ is p/emmmemé/e by PM), He seww/fs o/ewwemége b7 flust-o), 7h€ 41410 Are. Mtg/90% Saga file (Al/echo” /.S Pairwise JISJDI‘AZ‘: ‘ 14+: __ SQ 'Q’AI' IS dent/(WW8 0r (Ozk‘l) ...
View Full Document

{[ snackBarMessage ]}

Page1 / 3

mt2key - 7 Name K L’(1 MATH 108 Section 1 Second Midterm...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online