midterm_solutions

# midterm_solutions - Problem 1[12 Points(a[2 Points Let A be...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem 1 [12 Points] (a) [2 Points] Let A be a nonsingular n x 71 matrix. Describe the factorization (and the matrices involved in it) that is obtained when Gaussian elimination with partial pivoting is applied to A. PA=LH P 7— Pﬂrwu‘l’mh'om wxotl’r-f’x l. 1'. Mnle IOMr—‘l—rfomamjm- mm‘l’l’lux M 5 V‘UHSl‘M‘XV‘eQr urpef .-+F:qurzmt M0t+frx (b) [6 Points] Apply Gaussian elimination with partial pivoting to the matrix 0 ol «3 G ‘3 A 7 010]A = 1 0 2 Stamp rows 1 0 O o 1 I (.0 and (3) -3 6 *3 > o 2. l km.) (1) «7 roum- Ag) wa) D l I =Hw (2) + g row (I) ((2.:‘l/3) ’3 (a ~3 “‘7 0 7. l .. \rowl‘s) 4) rowC’s)‘J- WW“) — M o '/ (x3144) O 2— \ 0 O 0 at L: -‘/3i 0 P: 01 o o VL 1 ) l 0 0 (C) [4 Points] Use your result (:)}.>tair1ed in (b) to determine the solution of 14.1: b where “‘3 ‘3 ‘2) C 2 '4’ " L—Vé) 1; I 3 z -— L13 ’4 C2 ' a, 3 3 G3 “6 r3)/’g 2. l x : 3 =9 X : (3—H/L :- O I/Z. '/ \ "—N Problem 2 [8 Points] Let a E R be a parameter. For each a, consider the set U 5a Z {111: 6 R3 u + 21) +311} 2 a }. ‘lU (a) [‘2 Points] Determine all values of a E R for which .311 is a subspace of R3. 3 SK SM‘OSPQClﬂ 3) 7:) o(:. 092‘063u0 3) X: 0 L‘s ‘l’chﬂ (914/29, FOJJHM WW6 q SO L’s CuaCeeJ a suéfpace: xego) Ce‘2 ‘9 O =CCM+2V+3wJ a (14+ Z(CV)+3(CW\ =9 axe 0 Similar; 283 e .50 a) X+j 6 50 (b) [4 Points] For all values of (1 obtained in (3) determine a basis for the subspace SQ. 7‘ 3 V‘: -\ 6 SD3V1 : .0 Q SD 0 ‘I > V|> V; L‘s O; koala-{S £W S 30:} (c) [2 Points] For all values of (1 obtained in (a) determine a basis for the orthcgonal complement Si of Sn. Sn}; (1 <2. ’ Problem 3 [6 Points] Let 1 1 —1 2 ‘ v1 : 1 , ‘U-g :: 2 , v3 : v; +- ’U2, U1 : 111 — 217-; +173 —1 1 and consider the subspace S : span{ U1, 'U2, v3, 114 } of R4. (3.) [4 Points] Determine a basis for the subspace S. \/3)=v\+vz V%:V‘-2_VLi-V‘3-: Zv'avé -_—.) SPQMlLV\)‘VZ} : SPQMQV‘)V1/ v3)v\t} 2 S VHVL 0\y~{ L‘Marza (“MWWK+1 1—. Civl “' CZVL : —-C\1~zcZ ,_ 0 5 Qi+cz”o MS) V.) VL (‘3 6L 200(813 ‘90“! S (b) [2 Points] Determine the dimension of the orth(‘)gonal cmnpiement S’L of S'. . .L _ (Km/mg Zoe/{wiR‘f‘OQ/{mg‘lLi-Z-IZ Problem 4 Consider the matrix C(A) : Sloan/.110”) Q3} . 0") £13 aqu owe Knew/(3 Lnabrwohui~ (b) [4 Points] Determine the dimensions of the four fundamental subspaces C/Q/‘i m C/ ) ‘= 2— C; \" ob‘w. NCA) : 3*2. 2| aw CcA') A..— - fault xi+X3 1:0 __ A X :0 C: -x. 4.x} :- Xl ’ T [x‘ _ K x- A O Fh/UAJ‘: N(A): X:Yig]\ X1219} : o \ OWA 22 [S Ct foams {W [14 Points] (J a. [email protected]: (EN CH) of A. (d) [2 Points] Find a basis for C(AT). ., \ _ T l . i .. l l 2) [ll]) [71;] \‘S a. 901391 £01’ (e) [2 Points] Determine if A has a right-inverse, and if it does, determine all its right- inverses. Aé le’doU/ml rank—A = Z "'9 A has 0L Wald —an’r~£€ Cu C47. ‘ 0 C” i” C3. C|Z+ C37. C3! C32 [0 J: A C : Cut+Csi C|1+C32 _C‘ +C' __0 C3I=lé H 3| (2.9 C -. Ctz+C32=0 "’ /2. V; "'VZ "C12 *‘ (32 =l 6’32 :‘Q C c: _—l D) C 2 C11 '22. I CZ!) C22 QQ 2 - /a V; /L ) (f) [2 Points] Determine if A has a left-inverse and if it does, determine all its left-inverses. _w3 AelR Mi fahuA=z<3 =9 A lnas mo ﬁltd‘mwrse Problem 5 [10 Points] True or False? (a) [2 Points] Gaussian elimination with partial pivoting applied to a nonsingular matrix can break down due to a zero pivot. El rPrue MFalse (b) [2 Points] If a subspace S of a vector space V satisﬁes 5' :2 Si, then S 2 V 2 MTrue [:1 False (c) [2 Points] A least-squares problem always has at least one solution. [ll/True El False (cl) [2 Points] Any matrix A 6 IR’”” matrix has a right—inverse. El True EFFalse (e) [2 Points] The set of all vectors u ‘U E R3 with w:1 ;: l U) is a subspace of R3. El True M False ...
View Full Document

## This note was uploaded on 03/18/2012 for the course MAT MAT 167 taught by Professor Rolandw.freund during the Fall '10 term at UC Davis.

### Page1 / 8

midterm_solutions - Problem 1[12 Points(a[2 Points Let A be...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online