MATH201 Midterm 2 2007

MATH201 Midterm 2 2007 - AIBI BII BIII BIV Total 10.12.2007...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AIBI BII BIII BIV Total 10.12.2007 Name, Surname, Studen No: Recitation Section: Math 201 Midterm II (out of 70) Duration: 90 minutes Part A: Delete as appropriate and /or fill in the blanks. Explain your answers. (4 points each, no points if the reasoning is not given). ~ I. There iséslifla, 5 x 5—matrix such that rank(A) : nullity(A), since hawk {gitlrrmflfiéfigk ,7 f: .5" X]? writ 1114) fidl’z’lrfiffii) fanw'f‘i)‘: 3’15 we f-‘D Sfilg’gflf a mflfaflcéen H. The span of {1,12, 1 + 332, 1 — 3:2} has dimensionflifiu, since 4/ - I 1' -' ’ I .4 4 ,7 >13; _{...._,w 13m km}? {)2 [/neorfl)mbwfl?9aw (4’ {9.34.5 X y * are. Urfiflr’fgé iii/fail? :m die/rag first! III. Let A be a 4 x 6—matrix. The smallest possible value for the nullity of A isnXQN, since VOHJI’I’fN if {iii}: 6 .flfif rank/fl} awmflmosgfl IV. The subset S of P3 given by S = {p 6 P3 : 12(0) 2 0} iS/isflfnofi a subspace of P37 since (here show your arguments for S being or being not a subspace) fa ,7: rim! 52%)ch a‘me SmL’ér a ma £935; x2?/ 04%» pavef >0 :5; ,e y r‘ / l S“! J ‘ \ J 3/, «kw it. by; (“f/LAP 2 9x J? {fie/ffifim/m ’7 ) Part B: I, Let 1/1 = (1,—a,1,1),v2 ( Lori—2, 2,01 1),?)3 m (1,2, 1,a2+2a 3). Determine for which values of a the vectors v1, v2, 1);; are linearly independent and for which values of a they are linearly dependent. 6 points ~[/1] KT] V7 are [I‘mr% A4 -f‘,:\2 : 0 $3»; a nonl‘er/a»? QDW/ flaw Mid? E darbfivgflflflfl .2 f ’2: 4 a A; O ‘ Ki 7 ZN I; 4 5;” 5r (—3 1’ < 4 "‘4 4 ,"Zgz M, .4 ~4 4 23 w 0 i. Z 523 a) O 2 £+Z ~=~—-—% ‘ ‘ fl wig: gig/J O , ,2 IQZQAQE 0 2 £1“; £1 t? I « / K0 3“ 532314 R“ ’4 o 5. 5:25:41," % / ; -l r i j/ fi/ 1 o / Z #3. 0 / (91: f c) 0 £22 m—(fizflg 3 o (9:14“ 0 0 £244 0 .. M“ < warm 3 (Aw/7 fliwfiomoo it?” ( [Em £2,010,731 ) 11. Let 1 1 2 1 0 0 0 0 3 —3 A _ 1 1 2 2 ~1 0 0 1 0 0 (a) Find a basis for the r0W3pace of A‘ (ii) F ind a basis for the columnspace of A. (iii) Find a basis for the nullspace of A. 13 points (iv) Find rthA), nullitym), OD ’ (200 *‘a r"_ 5 i 2— %,Q2 30 lg (xii: @0000 g D n J“ 0 Q 0/ gamed/g .\i‘i0.0~/ OOCDQQ 000C?” QOQQQ ’7‘??? , , ,I @wjfiyzrjrgyowgfoa 5 {(il/IO’QI)/ (0/0] ’O’O)/ “Mp/Lin /) \ ' k r 130/ A“, O "f a] \ . I ’ W1 y;- :3 fiWfirle WWWW 5 I? ‘ 9 )2, $27 >< : 0 c) 1, \ g . o i I j 745:“! >493“ i (b) Show that v = (“1, 3,0, —2, ~2) is in the nullspace of A and determine the coordinate vector of 11 relative to the basis of the nullspace of A you found in (3) (iii), 5p0ints ,__r ’3 , A{ 5 )1: 1:7 Cf/z‘olfiflg fiflgéfflm :if E): I ll. ,4 if u e ‘ "’ O _ ,fi‘M’Z Mi I) V 0 as? 11/: 3/ 2 {Kg ‘3 Va 0 fflm‘; -:~ I h I 0/ (1:) Explain how you can obtain a basis for the orthogonal complement of the columnspace of A (Do not calculate) What is the dimension of the orthogonal complement of the columnspace ofA (explain!). 5 points x a ‘ <3 126 v 001%: mm 317“) “1'7 74 " m “J “F I m Orificpgqflaf of fowsjflm Val/1V: a fill/7:; was; A; 2:7 ramming a £0,920 [29? lg naz’igfwagf/qfi Afgaa 4 /” army“; :27? (OM; 'r flag/XE) I347»): " '3 «F fluff/£3 6447)»: 4, W '7” .\ ‘ 5:! ngéf‘EWWfifA £110 diWfi3/GGI /f III. (a) Consider the subset s = {p 6 P2 225(2) = p<—1>} Of P2. (1) Show that S is a subspace of P2. (ii) Find a basis and the dimension of the subspace S of P2. . a . . , 7 A (I) - 3 ,5 m emka I 06$: gym, 0 r2. ,) s OH): O 10 Pomts .. <E§6Q£€efunlm SVFPOR 73/? 6‘“ g x) (Pl/fixfflfljgm é: . ‘s q(z)-=<;{L—J)é=f£’ =7(?¢4)(2—?" PIER???” gm“ :7(77‘*<?)(293/77WV”’] (“WW/'1’) ; PM “9"” 9 6M :7 79+? 6’5“ - Srkogmeg anJm gmlar mwfiipil’coléoh g (‘5‘: f; :7 79/2} 5 VILUEir—S: 1:7 (’kpjfzfi iii/912)): M: =3 (“QC/S (Isz/L‘ WNW “‘3 (m awaxfigfijf 5’ 4:3» $70er?? fishy; :: aa‘“<>?4-nsza (:57 3041*3mzn O (=7 .02: FQ/f .— ‘L rm ,7 S: {flo'mfi’f‘w /"9"01’536’K/2 t. fie?" 04X’V4X My»? ; x90+ 0:4 {'xrxz) $0,494 6%: ’- ,._.— ‘ J‘s—.— ~ Sec”an Urge/1424M firm w ‘ S msigm [5’4] xv}; £3.46 (/1) :5 S M :19 $113?qu (b) Let U and W be two subspaces of a vector space V‘ Show that then also the intersection U 0 W is a subspace of V. 8 points (make sure that your arguments are complete and precise) (E) (“M W '73 WWW 53m“ U and W’ 0% we 311195578263 of 1/439. @453 éafltfenz)? {a We Vector s? 0 E a” [A/ \ Uft l2] {S fiaxgafitén QJJM‘G” 3 M {EU/1W and: VEUGM 9! way one? vé'M "‘w (M (Lt/end? V6 W ’77\ Sifice ‘4’? 5/” §Vé§pmc>l7 V/ «£5 afigen Qgfiffixé’flk‘] as) M/VEM M52} (“fl/é (A; uer 0/; b/ Wimfla. 330m 0V5” WMMQVZYM) LYN/6 W > My Suffix?» V w [:5 (Mia scalar ngfigizalme: ‘ (In) {14 W . i 5:? M51} 03% £16” W~ Since U, lax/Gift:— V’ )- fl \ ‘ 9 (4, ~, , 'nén yabrflV/Mpflmfml 0&2: kué’Um’Z 1m 6W j“b’5fl‘>”“mf kr/‘lzmfi’ (Mu $7 la: a? w ’3 IV. Let A, B be matrices such that AB is definedmmé columns of B are linearly independent and suppose that the intersection of the nullspace of A and the column space of B is Show that (AB)3: = 0 has only the tn'vial solution. 7 points (whflwfie (Ag) {7° 2 ’4 Hair/i " O ‘ 3:) 751)» 5; fiuifspaa A.) V I r 7 (fl iris/E/Mé‘gtr 6' ébélmn‘sflooa :9? if) it> gay: 0 i ‘ t I (Z are; 3‘ i i. 4 3 ‘ #3?” £9.30 5.ncz#8(;%mflgo7pp kul 20‘ 0 / Li'flfyr ...
View Full Document

Page1 / 6

MATH201 Midterm 2 2007 - AIBI BII BIII BIV Total 10.12.2007...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online