f09_mthsc852_hw12

# f09_mthsc852_hw12 - MTHSC 851/852(Abstract Algebra Dr...

This preview shows page 1. Sign up to view the full content.

MTHSC 851/852 (Abstract Algebra) Dr. Matthew Macauley HW 12 Due Monday, September 7, 2009 (1) (a) Let R be a UFD (unique factorization domain, commutative), and let d a non-zero element in R . Prove that there are only ﬁnitely many principal ideals in R that contain d . (b) Give an example of a UFD R and a nonzero element d R such that there are in- ﬁnitely many ideals in R containing d . [No proof is required for this part; however, you must describe not only R and d , but also an inﬁnite family of ideals containing d .] (2) Suppose f ( x ) = 1 + x + x 2 + ··· + x p - 1 , where p Z is prime. (a) Show that f is irreducible in Q [ x ]. [Hint: Write f ( x ) = ( x p - 1) / ( x - 1), and substitute x + 1 for x ]. (b) Show that ( p k ) = k +1 i =1 ( p - i p - k - 1 ) for all k < p . (3) (a) All of the following rings R i , for i = 1 , . . . , 6 are additionally C -vector spaces. In each case, compute the vector space dimension by explicitly giving a basis for R i over C in each case. R
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Ask a homework question - tutors are online