mthsc810-lecture09-2x2

# mthsc810-lecture09-2x2 - MthSc 810 Mathematical Programming...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MthSc 810: Mathematical Programming Lecture 9 Pietro Belotti Dept. of Mathematical Sciences Clemson University September 22, 2011 Reading for today: Sections 3.4-3.5, textbook Seminar at 4:45pm @M-103 by Banu Soylu Midterm next Tuesday. Open or Closed books/notes? Homework #5 is out – due Tuesday, October 4, 2011. Reading for Sep. 29: Section 3.3, textbook Recap: Dictionaries and LPs Consider the LP problem: min − 5 x 1 − 4 x 2 − 3 x 3 s . t . 2 x 1 + 3 x 2 + x 3 ≤ 5 4 x 1 + x 2 + 2 x 3 ≤ 11 3 x 1 + 4 x 2 + 2 x 3 ≤ 8 x 1 , x 2 , x 3 ≥ , and rewrite it in standard form: min − 5 x 1 − 4 x 2 − 3 x 3 s . t . 2 x 1 + 3 x 2 + x 3 + x 4 = 5 4 x 1 + x 2 + 2 x 3 + x 5 = 11 3 x 1 + 4 x 2 + 2 x 3 + x 6 = 8 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ≥ . Recap: Dictionaries and LPs A dictionary is simply another way to express the LP: min − 5 x 1 − 4 x 2 − 3 x 3 s . t . x 4 = 5 − 2 x 1 − 3 x 2 − x 3 x 5 = 11 − 4 x 1 − x 2 − 2 x 3 x 6 = 8 − 3 x 1 − 4 x 2 − 2 x 3 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ≥ in many 1 equivalent ways—this is the second dictionary: min − 25 2 + 7 2 x 2 − 1 2 x 3 + 5 2 x 4 s . t . x 1 = 5 2 − 3 2 x 2 − 1 2 x 3 − 1 2 x 4 x 5 = 1 + 5 x 2 + 2 x 4 x 6 = 1 2 + 1 2 x 2 − 1 2 x 3 + 3 2 x 4 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ≥ . 1 To be precise, ( m + n m ) = ( 3 + 3 3 ) = 20 ways. Possible troubles with the simplex methods The example we’ve seen last time is ideal in that none of the following problems occurs: ◮ Unboundedness : There is no exiting variable; ◮ Initialization : For the initial basis, B − 1 b 6≥ ; ◮ Degeneracy : Two or more (potential) exiting variables. The latter generates a lot of other problems. Unbounded problems What if we had x 4 = 5 − 2 x 1 − 3 x 2 + x 3 x 5 = 11 − 4 x 1 − x 2 + 2 x 3 x 6 = 8 − 3 x 1 − 4 x 2 + 2 x 3 z = − 5 x 1 − 4 x 2 − 3 x 3 ◮ For any x 3 = ϑ > 0, x + ϑ d = ( , 1 , ϑ, 5 + ϑ, 11 + 2 ϑ, 8 + 2 ϑ ) ≥ because of the positive coefficients 1 , 2 , 2 of x 3’s column ◮ The objective function tends to + ∞ for ϑ → ∞ . ⇒ The problem is unbounded, i.e., it admits no optimal solution of finite value. Initialization For the problem min − 5 x 1 − 4 x 2 − 3 x 3 s . t . 2 x 1 + 3 x 2 + x 3 ≤ 5 4 x 1 + x 2 − 2 x 3 ≤ − 11 x 1 , x 2 , x 3 ≥ , or, equivalently, min − 5 x 1 − 4 x 2 − 3 x 3 s . t . 2 x 1 + 3 x 2 + x 3 + x 4 = 5 4 x 1 +...
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

mthsc810-lecture09-2x2 - MthSc 810 Mathematical Programming...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online