# test1 - Math 250A(Kennedy Exam 1 Fall ’07 SHOW YOUR WORK...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: \) Math 250A (Kennedy) - Exam 1 - Fall ’07 SHOW YOUR WORK. Correct answers with no work Will get no credit. 1. (14 points total) Find the following /0 cos€d0 pan}: 7: 9 / v'= @19 M(9 ,/ V, 6 QSMQ -' J‘s.;8‘dg , 6.3.16 4— 0046‘ ‘f' C ‘5 d—di tsinh(t2)dt _2 - ICC/and Punlqmewfl‘al WQ‘M’“ ‘f Cad (“/“J r “L A ()7)? Sml‘ a J In“; .JLL f; gm. (Inc!) "4 ’7‘ D 2. (21 points) Find the following w dx m 2w (2+e“)3 /‘ 7‘ q ~ «2 = = ~i u H ~L : ‘7): {lie/k + C 77/2 /0 sin0c0860d6 fut, M9 “,9 Ultvfigg ‘ 7 v Ignace/949’ ’f “6 o’k :. -3101 1°C a \$W15i~600169 J6 = ~ 1} 9:79 W“: a o 7 .L a —=% (w (2U win/77E 3’3 d - 2 y2+1y 5*; (4" 3 T/ M" 7’7 J? 2L {JM 3 favoi Ja ? M 3/; 1 '- i *’ UL~‘(1)‘[“: {(3501 —;uV 7‘6 3. (22 points) The slope ﬁeld for the differential equation %% = g(a:) is : \ \\\\\ \ \ \ \ \ \ \ \ \ \ \ \\\\\\\\\\\\\\ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / //////////////// ///////////// \\\\\ -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 (a) Sketch the two solutions that satisfy y(0) = 1 and y(0) = ‘—1 on the slope ﬁeld. (b) Suppose y(ac) is a solution and c is an arbitrary constant. Which of the following is always a solution of the differential equation? y(m+c) No‘l‘ alwa a f“ “4"” y(x)+c I‘M-«Aw! 0 I” (“Am NOI‘ cult-v6.1.1 o. JoLWL‘D” y(-w) —y(m) ﬂ(wa?1 u S°lbf|v°n (c) Sketch the graph of g(a:) on the axes below. 4. (12 points) Find the solution that passes through (0, —1) for the differential equation %=\$51n(x2) 7' . {a L M 4 4: . Ju’ 24°C]? 9 5. (15 points) For the differential equation below, determine where the solu- (ﬁmf(:\(°‘tjﬁl7' : P—(i/ 011A”) - #mx(k”/ +C tions are increasing, decreasing, concave up, concave down. da:_ t EU?“ is )0 2? (7° <21" j“ (,9 i? if." we” OIQ¢ ftf‘) “ ‘f 7’7"] F’- " z. (pg/‘1le G.(VG) )0 4:1" «4 <.+<! VW‘“ Comc ow" U~I’ Were If ~f’>/ if 7L<"// “(a Oohcaw «Law :2 {J5,;k JM ~£ “1/92 7‘C rec-l"? Mm {a (:C (a JCQI‘CGI ’6 Z c {‘7‘ .. ,_.____..__._. 6. (16 points) Deﬁne the function by It satisﬁes the differential equation dy_ dx- (a) Given that E(1) = 0.746824 ' - -, ﬁnd 31(1) Where is the solution of the above differential equation that satisﬁes y(0) = 2. Jewel :6 New 5w 2‘ 2. 53(0) 50 big/ere ngcJ OTC 2— €(Q/TL. 5, 2‘7?(517 6"”2 f— —— \$41») I l M £9 50212 N ‘7. ~ - K 9(0’: (b) Now suppose we want to ﬁnd the solution of the differential equation and initial condition d ‘ y -— = = O m M) Find the value of this solution when a: = 1. 5‘0 (hf-1&- I" It ace—m , '3“) t; w (c) For the differential equation and initial condition given in part (b), express the solution in terms of the function .L L ~ '— ’ voxh)’a ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

test1 - Math 250A(Kennedy Exam 1 Fall ’07 SHOW YOUR WORK...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online