5.6 Area entre curvas - Section 5.6 Substitution and Area...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Section 5.6 Substitution and Area Between Curves 329 s 8t cos ( t) 1 s(1) 8 cos 1 10 m Êo ± ² Ê o ± ² o 11 61. All three integrations are correct. In each case, the derivative of the function on the right is the integrand on the left, and each formula has an arbitrary constant for generating the remaining antiderivatives. Moreover, sin x C 1 cos x C C 1 C ; also cos x C C C C . ## # "" # " # # $ # " # # " ² o ± ² Ê o ² ± ² o ± ± ² Ê o ± o ² cos 2x 62. Both integrations are correct. In each case, the derivative of the function on the right is the integrand on the left, and each formula has an arbitrary constant for generating the remaining antiderivatives. Moreover, C C C tan x sec x 1 sec x ### # ± " ² o ² o ² ± ð ñò ˆ‰ a constant 63. (a) V sin 120 t dt 60 V cos (120 t) [cos 2 cos 0] Š ± ± "Î'! ! # 60 0 120 V ' 0 16 0 max max 1 o ± o ± ± max [ 1 1 ] 0 o ± ± o V max # 1 (b) V 2 V 2 (240) 339 volts max rms oo ¸ ÈÈ (c) V sin 120 t dt V dt (1 cos 240 t) dt '' ' 00 0 0 0 0 max max ab # ± ± 1c o s 2 4 0 t V 1 max t sin 240 t sin (4 ) 0 sin (0) o ± o ± ± ± o VV V 240 60 240 40 1 0 max max max # # " " "Î'! ! ± ± ˆ ˆ 1 5.6 SUBSTITUTION AND AREA BETWEEN CURVES 1. (a) Let u y 1 du dy; y 0 u 1, y 3 u 4 o ² o Ê o o Ê o y 1 dy u du u (4) (1) (8) (1) 01 34 È ± ‘ˆ ˆ ˆ ˆ ² o o o ± o ± o "Î# $Î# $Î# $Î# % " 222 2 2 1 4 333 3 3 3 (b) Use the same substitution for u as in part (a); y 1 u 0, y 0 u 1 o ± o Ê o y 1 dy u du u (1) 0 10 È ± ² o o o ± o "Î# $Î# $Î# " ! 22 2 33 3 2. (a) Let u 1 r du 2r dr du r dr; r 0 u 1, r 1 u 0 o ± ± Ê ± o # " # r 1 r dr u du u 0 (1) È È ± ± o ± o ± o ± ± o # " " # $Î# $Î# ! " 3 (b) Use the same substitution for u as in part (a); r 1 u 0, r 1 u 0 o ± r 1 u du 0 È È ± o ± o # " # 3. (a) Let u tan x du sec x dx; x 0 u 0, x u 1 o o Ê o o Ê o # 1 4 tan x sec x dx u du 0 41 # # " ! " o ± o ’“ u1 (b) Use the same substitution as in part (a); x u 1, x 0 u 0 o ± ± 1 4 tan x sec x dx u du 0 # # ! ± " o ± o ± u 4. (a) Let u cos x du sin x dx du sin x dx; x 0 u 1, x u 1 o ± Ê ± o o Ê o o Ê o ± 1 3 cos x sin x dx 3u du u ( 1) (1) 2 1 $ $ $ ± ± " " o ± o ± o ± ± ± ± o cd (b) Use the same substitution as in part (a); x 2 u 1, x 3 u 1 o o ± 3 cos x sin x dx 2 21 31 ± o ± o
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
330 Chapter 5 Integration 5. (a) u 1 t du 4t dt du t dt; t 0 u 1, t 1 u 2 o ± Ê o Ê o o Ê o o Ê o %$ $ " 4 t 1 t dt u du '' 01 12 $% $ $ " # " ab ’“ ± o oo ² o 41 6 1 6 1 6 1 6 u2 1 1 5 (b) Use the same substitution as in part (a); t 1 u 2, t 1 u 2 o ² Ê o o Ê o t 1 t dt 0 $ $ " ± o o 4 6. (a) Let u t 1 du 2t dt du t dt; t 0 u 1, t 7 u 8 o ± Ê o Ê o oÊo o Êo # " # È t t 1 dt u du u (8) (1) 78 ± ‘ˆ ˆ ˆ‰ˆ‰ #" Î $ % Î $ % Î $ % Î $ "Î$ "" ## ) " ± o o o ² o 33 3 4 5 48 8 8 (b) Use the same substitution as in part (a); t 7 u 8, t 0 u 1 o ² È t t 1 dt u du u du ' 1 8 Î $ " Î $ "Î$ ± o o ² o ² 45 8 7. (a) Let u 4 r du 2r dr du r dr; r 1 u 5, r 1 u 5 o ± Ê o o ² # " # dr 5 u du 0 ± ² " # ± # 15 5r 4r (b) Use the same substitution as in part (a); r 0 u 4, r 1 u 5 oÊo oÊo dr 5 u du 5 u 5 (5) 5 (4) 04 5r 8 ² " ± # ± " ± " ± " & % ² o ² ² ² o ± ˆ 8. (a) Let u 1 v du v dv du 10 v dv; v 0 u 1, v 1 u 2 o ± Ê o $Î# "Î# # 32 0 3 È dv du u du ' 1 2 10 v 1v u3 3 3u 3 1 3 20 20 20 20 1 10 È ² " ± # # " # o ² o ² ² o ˆ‰ ± ±
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 15

5.6 Area entre curvas - Section 5.6 Substitution and Area...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online