Exam #1 (B) - B Math 201 — Test 1 loti'i‘ ting Section:...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: B Math 201 — Test 1 loti'i‘ ting Section: Name: I In problems 2 and 3 below indicate your choice by circling the correct solution . Work will not be graded. Work will not be graded on problem 14 as well. For all other problems, Show appropriate work on the test page to receive credit and place your answer in the blank or space provided. Point value of each problem is given with the problem statement. Calculators are not allowed on this exam. Formulas you n(n + l) n(n + l)(2n + l) "29, + 02 2 ’ 6 4 may need on this exam: , 1. Solve for the variable in each equation below : (5 points each) / l 21—1 6t—3 t t « (3 a. —— = + __ : ) 2 5 10 . l KJC Iotv‘s’fl. nee 7 jg 1:11,] ,0 ' ,0 r to 3 a 4, ‘E lot-rs « I'L'E'CHJC CW“ 3% ’~ “:1 .t v i‘ Jet, "‘5 4" ,l _L WC \: 1t rig 1 73 +139 -t , _.! 4 ’ . \ b) 8 _ 1 1 e v g 4”“ Ni; gottilw 'x2—1_x+1 x—l «g at“; ________ is le x4! X 1,_‘ v 62:00?” ()(rhMXr!) <6 2 Xvi "'" (KIM) (g -- ('1, Ni; x cart/x Swl‘gi") “Yle Qq’cm‘lidk 2. In the literal equation below, solve for t in terms of the remaining variables. (5 points) (Circle the correct answer.) mt+gt=2(3+t) Al6‘m_g B) mg6—2 C) mg6+2 D)m—+£gfi E)n1+6g~2 mJtJrfih Z Czrllf twig "r (53% “if S L HVM‘XVW 3'9 (0 JC’: /(wttgr2) 3. The sum of the root(s), that is the solution(s), of the equation x/x + 2 = x — 4 is: (5 points) (Circle the correct answer) A)0 B)9 C)—5 D)5 7E)7 f7 X41 : lX-"OiL O ': (Xr'l\(><*“l) Limixili drift—1- 3'3"“! , ’Li’lp/Q. X” : XT'QMJ’W X “r 13‘ Mix-7ij1’? ‘« W1 ) ’Sri‘ 0 : X'Lrply'il‘t LINKV Solution/A 3% X77, Slime; Veils NS 4. Solve forx: x4 - 7x2 + 12 = 0 (5 points) Lil/i \N: 79L 96 x131) r . , ~ _ R , / +i WI wj‘wp'rlt «o W 1%} (Wt—swwvtm ;0 W x *1 _, ,, ,L W 54:11 w ~> W ( ,_./ ' 5. In each application problem below represent all unknowns in terms of one variable, establish an appropriate equation and solve. Show all appropriate steps. (7 points each) ' a.) A homeowner needs to spray her trees to kill defoliating insects. She needs 128 ounces of a solution made up of 3 parts insecticide A and 5 parts of insecticide B. How many ounces of insecticide B should be used? L9; X: dilemma; (>9 indwld‘tléz 3 Ram $110va ~ X ‘3‘?- txi tkhéi-L‘I’WL‘VA +0 Eootat & s % '§ so tbxixt‘7% m b ksio ch:w% W 5‘07 +0 \ X: : ‘130 C ' [(0 AV‘SLW’V wine. M<3 ~+u $30 b. ) A company’s revenue from the sale of interior doors is $98 per door. The cost of producing the doors is $48 per door with $14,000 in fixed costs. How many doors must the company sell in order to break even? 01W“, pure/Mia : Casi. I Lu? x: 4/ elem") SblAr ' Zgo (1/0“; W manic/X are x : Mx + W000 ST) 'x t "4000‘ 1%000 , X 1 , P 2/ Cc)? YO 6. Solve for x in each inequality below. State your solutions using interval notatifl. (5 points each) g _ . a) a.) 6x 2 2 __l wwtl'l': "W H 2% X 7; /2\’l 1 3 4 a ’ 3 q lbw) Z. --\ *3 X 3 /;I1 1HX«?,Z“3 A 26 9 X axis leg ‘ H U 290 b) 2x+8 24 Z “ °Y 3 ‘ (fpoi‘HA L] 3 3 4% Al 2 x l 2 Z W W 7 X / c , LC 2 x 3 ‘1 W 1 X “ xéelo X i 7, W A ' ‘ 20 _7. Evaluate 214i. (3 points) _Z/fl L‘ 0 i=1 ’LC. ‘1 WEI“ :N-E—‘lf—‘iu : Nle-lezfii‘lo ’2“. 7/4“ 8. State the degree and leading coefficient of the polynomial function f (x) = — 3x8 + 2x5 + 4. (1 point each) ’7' Leading Coefficient: v '> Degree: g 9. Given the function g(x) = x 3 , find the domain of function g, g(0), g(1/2) and g(x2). Simplify your answer if x _ needed. (2 points each) . f ' W 6510') L 0/13 2 o DomainzAH VWX 7/.> V), VL l K: 1 —-—' 1, fl 3 l /S/ 2 3l 5 kg ,s/L g(0) . . _. , » — \ / 2 “ 3L g(1/2)= . /> w 3 ~ 1 .L x 1’) j, g(x2)= LE;— 10. If f(x) = x2 — 1 and g(x) = x + 2 , find: (3 points each) ' 'L a.)(f+g)(x) : Xtvl4X+L 1xLe/V} X +X+\ b.) (fxgxz) : (11-0 luvs 7: an :11, )2,- , a 1 3L 1-} qxufg 0') Z X’KX—ll‘); (K34) .9, l X yqx¢4[/-f X ‘ _ I + ‘ a , I d.) (gofXx) : 03M)». (“x-1.3", baym : x M X 11. Find the inverse of the function below if it exists, showing all appropriate steps. If the inverse doesn’t exist, so state. (5 points) Y 2 1.2V 5 - f(x)=3x—5 W: —_ s; lynx) 1 XE? /fl IV”) )5 4 Y1? : X _———— ll‘www 7) “x {lurppl’vbk (w? ,, )U 3' \‘g anew "0“ 5; (X) I.“ "i, to l" {)0 gig 12. Given the equation: y = 4 — 2x2 : (8 points) a.) Sketch the graph on the axes at right b.) Identify the intercepts g . ‘ ‘P‘ . 0 x intercept: Ni ‘3‘) ) {'91) L) o y intercept: (0: “l3 ' . . do ‘> 0.) Based on your graph, 15 y a function of x? y "L be « _"_)_ ymk dist “"3 17/ e.) If y is a function of x, what are the domain and range? _ 0 Domain: “if y d.) If y is a function of x, is it one—to-one? a Range; J 90’} x 90 Jrlxm y 3 Li L r ' Sci \/ :0 “PM 0: ‘1‘?" 3 1X “ LI x 13. Graph the case defined function below on the axes provided. (4 points) y H $3) J 0, x + 1 if 0 S x < 7 y = fix) = . 5 If x 2 7 {:9 awe/4 i 14. Complete the table below indicating the types of symmetry of the graph of each equation. The first row is completed to illustrate an appropriate response. (1 point each cell) guation y = 5x —axis s mmet ori in s mmet NO x-axis symmet NO y=x2—4 ...
View Full Document

Page1 / 4

Exam #1 (B) - B Math 201 — Test 1 loti'i‘ ting Section:...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online