Exam #1 (A) - A Math 201 Test 1 A ‘ Section Name O(Vt/1L...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A . Math 201 - Test 1 A ‘ Section: Name: O (Vt/1L \ wj In problems 2 and 3 below indicate your choice by circling the correct solution . Work will not be graded. Work will not be graded on problem 14 as well. For all other problems, show appropriate work on the test page to receive credit and place your answer in the blank or space provided. Point value of each problem is given with the problem statement. Calculators are not allowed on this exam. Formulas you 1 2 2 may need on this exam: n—(nJr—) , W , ’1 ("4+1) 2 l. Solve for the variable in each equation below : (5 points each) a)2_t__1 : 6—,:3 __r_ 1’ it t j i 2 5 10 / tot-S A_ it—b V i [(2 1 (0 [0 5 — ’ : 11% r b "t it? .3 e 4 u i : ’Zmi; ' “l: 8 z 1 _ 1 Mi; gcluiwh b.) x2 ~1 x+1 x_1 m <5 X-l Kai (HAM-1‘) v (7m \(va (>0 tiller) 9, : X-t a (Km) 55 7;. “'2, NR. X Lew Sng‘l’lSQLI ‘l’l’xig fizzux‘Il‘Vh 2. In the literal equation below, solve for t in terms of the remaining variables. -(5 points) (Circle the correct answer.) mt+gt=2(3+t) 6 6 6 6 Amm‘g' B)mg—z Clmg+2 mag—2 mm -~..t+05t: (ant m‘h ‘l‘fifvl'k : C t_ ~_____,_ t W” @433 C» " “(HHS/2, 3. The sum of the r00t(s), that is the solution(s), of the equation V x + 2 = x — 4 is: (5 points) (Circle the correct answer.) A)0 B)9 C)7\ D)5 E)—5 M21551 1 2% m : Mr o:(></7~‘)(><'7l 2 x” : XIV/lsxlw X12 W X27 xr-‘Iijflw 2’7“! o : le 51X t “l - “Gm! vii—'2‘} Omit 1.: i 1; \{P‘J Amie] SW6 :9 X: ‘7 ' 4. Solve forx: x4 — 8x2 + 15 = 0 (5 points) _7 ,3, , w (vwaflv/Slio \t 3? 7» N 3/ 5. In each application problem below represent all unknowns in terms of one variable, establish an appropriate equation and solve. Show all appropriate steps. (7 points each) a.) A homeowner needs to spray her trees to kill defoliating insects. She needs 128 ounces of a solution made up of 3 parts insecticide A and 5 parts of insecticide B. How many ounces of insecticide A should be used? Lojz X rtfwflar HC‘aQ Woo-i" WM ‘ 0me JA 3x +S>< : Izié #— g0 3% out/w» 6/, insax‘hc‘l'be. 13X : [2% p x: 3?: Ito '5 3X ""7"" W b.) A company’s revenue from the sale of interior doors is $98 per door. The cost of producing the doors is $48 per door with $12, 000 in fixed costs. How many doors must the company sell in order to break even? 0mm : trim-{W , Cos-l1; ( I : @smew' « (Vim/:45 Let-is 3r VtI/VMLK 2140 8L2“; HP)va wine/1A“ vawS PW» 3 O l QC f o : «Ax “(W/"00 3’ WM) )WLW X" C) )7, 00C) , . r (E. x; (2000 X: « b‘lO 6. Solve forxin each inequality below. State your solutions using interval notation. (5 points each) I g 6x — 2 1 y, (- pg / ] a>—g—s—; ZWX—%:'3 ’1” V W -} e W V5, pm a fiat/t 3 X ’ Q L( X i 8 cf ((9)013 i '3 X s: 7-H 2 —8 — (: -2. U “’W‘O) b.) x3 _4 LX'?) 13% W 2x_gr( iLf 9°} is i/ K g v ' 20 .7. Evaluate 213i . (3 points) 2 7 3 0 i=1 7/0 :m ; ; , E, I) '2’ II 10. I: 1'5 .Lb 17‘ 8. State the degree and leading coefficient of the polynomial function f (x) = ‘—‘_’_2x7 + 3x5 + 4. (1 point each) Leading Coefficient: “2— ‘ Degree: 7 9. Given the fimction g(x) = , find the domain of function g, g(0), g(1/2) and g(xz). Simplify your answer if needed. (2 points each) Domain: X?’ -l4 Ll git/L3; Lu 1 ~37- : -'/7 g(0)= O V7]_L( 7/ ‘ l/ Xi. g(1/2): 7 ADC? 5" [)5’: K g(x2)= x52! 10. Ifflx) = x2 + l and g(x) = x— 2 , find: (3 points each) L a.)‘(/+g)<x) : x31 ,L >02 : 234 xv. (MW): Li; 13-) (fXgXZ) I $41)!)(zg : go i: 0, (.i’suwn : Q ~ ‘L L 1. c.) f(g(x)) '- H m) basz 4 I x «wwm {/3le :2 " ' z E A _ 2 , d-) (8°f)(x) 1 §(1le\) t 3(K M) : XL) 1-1, (6L4 )(A) - x _ \ 11. Find the inverse of the function below if it exists, showing all appropriate steps. If the inverse doesn’t exist, so state. (Spoints) 1. 1><« 7 M t \/ ‘ A! _ Ar? "g/(X) 1) Inf—"Hwhné \/v)’—7 v 2X Z 2’ .Su £063 ill/toe Vi? 5 X / 1 mm moan/L. vi )(f 7 J3 (2‘) : -——- 7/ 12. Given the equation: = 5 — 2x2: (8 points) y r. y a.) Sketch the graph on the axes at right. b.) Identify the intercepts _ - r:— ‘ o x intercept: )cx .L—f/l 1 5} o y intercept: (O, S ) 0.) Based on your graph, is y a function of x? Z? 5 d.) If y is a function of x, is it one-to-one? p9 ’ l '13 WA is“ i" S d“ 3 e.) If y is a function of x, what are the domain and range? 0 Domain: «LIZ; X 0 Range: (” PO ) V39! C: Ski/Xi ’Z/UI i XL 1‘ KW: , so? X14}: \/ 1: g” 13. Graph the case defined function below on the axes provided. (4 points) x+1if0$x<7 WW {5 \M W lb 6”“ ‘l / Pr 21¢ //> »‘ MN“ . / , . . r’ , I 1 «7?.- , x , , 1 ., I, I ( ‘7? >0 t» I, \ r k, a 41 r L .21 ,..- if \{1 51/ \ / i l "I 14. Complete the table below indicating the types of symmetry of the graph of each equation. The first row is completed to illustrate an appropriate response. (1 point each cell) ‘— Etluation -axis_symmetty x-axis immetgy ofl'gi'n Mmetfl y = 5x NO NO YES y = x2 — 4 i _ _ Ye ; M 0 Ni ‘ 2 2 x + xy + y = t N N I, i6 3 y = x2 — 25 ...
View Full Document

This note was uploaded on 03/26/2012 for the course MATH 201 taught by Professor Smith during the Spring '08 term at Washington State University .

Page1 / 4

Exam #1 (A) - A Math 201 Test 1 A ‘ Section Name O(Vt/1L...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online