This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: A
. Math 201  Test 1 A ‘
Section: Name: O (Vt/1L \ wj In problems 2 and 3 below indicate your choice by circling the correct solution . Work will not be graded. Work will not be graded on
problem 14 as well. For all other problems, show appropriate work on the test page to receive credit and place your answer in the blank or
space provided. Point value of each problem is given with the problem statement. Calculators are not allowed on this exam. Formulas you 1 2 2
may need on this exam: n—(nJr—) , W , ’1 ("4+1) 2 l. Solve for the variable in each equation below : (5 points each) a)2_t__1 : 6—,:3 __r_ 1’ it t j i
2 5 10 /
totS A_ it—b V i
[(2 1 (0 [0
5 — ’ : 11% r b "t
it? .3 e 4 u
i : ’Zmi; ' “l:
8 z 1 _ 1 Mi; gcluiwh
b.) x2 ~1 x+1 x_1 m
<5 Xl Kai
(HAM1‘) v (7m \(va (>0 tiller)
9, : Xt a (Km) 55 7;. “'2, NR. X Lew Sng‘l’lSQLI ‘l’l’xig ﬁzzux‘Il‘Vh 2. In the literal equation below, solve for t in terms of the remaining variables. (5 points) (Circle the correct answer.) mt+gt=2(3+t) 6 6 6 6 Amm‘g' B)mg—z Clmg+2 mag—2 mm
~..t+05t: (ant
m‘h ‘l‘ﬁfvl'k : C t_ ~_____,_ t W” @433 C» " “(HHS/2, 3. The sum of the r00t(s), that is the solution(s), of the equation V x + 2 = x — 4 is: (5 points) (Circle the correct answer.) A)0 B)9 C)7\ D)5 E)—5 M21551 1 2%
m : Mr o:(></7~‘)(><'7l 2 x” : XIV/lsxlw X12 W X27 xr‘Iijﬂw 2’7“! o : le 51X t “l  “Gm! vii—'2‘} Omit 1.: i 1; \{P‘J Amie] SW6 :9 X: ‘7 ' 4. Solve forx: x4 — 8x2 + 15 = 0 (5 points) _7 ,3, ,
w (vwaﬂv/Slio
\t 3? 7» N 3/ 5. In each application problem below represent all unknowns in terms of one variable, establish an appropriate equation and
solve. Show all appropriate steps. (7 points each) a.) A homeowner needs to spray her trees to kill defoliating insects. She needs 128 ounces of a solution made up of 3 parts insecticide
A and 5 parts of insecticide B. How many ounces of insecticide A should be used? Lojz X rtfwﬂar HC‘aQ Wooi" WM ‘ 0me JA
3x +S>< : Izié #— g0 3% out/w» 6/, insax‘hc‘l'be. 13X : [2% p
x: 3?: Ito '5 3X ""7"" W b.) A company’s revenue from the sale of interior doors is $98 per door. The cost of producing the doors is $48 per door with $12, 000
in ﬁxed costs. How many doors must the company sell in order to break even? 0mm : trim{W , Cosl1; ( I
: @smew' « (Vim/:45 Letis 3r VtI/VMLK 2140 8L2“;
HP)va wine/1A“ vawS PW» 3 O l QC f o : «Ax “(W/"00 3’ WM) )WLW X"
C) )7, 00C) , . r
(E. x; (2000 X: « b‘lO
6. Solve forxin each inequality below. State your solutions using interval notation. (5 points each) I g
6x — 2 1 y, ( pg / ]
a>—g—s—; ZWX—%:'3 ’1”
V W } e
W V5, pm a ﬁat/t 3
X ’ Q L( X i 8
cf ((9)013 i '3 X s: 7H
2 —8 — (: 2. U “’W‘O)
b.) x3 _4 LX'?) 13% W 2x_gr( iLf 9°} is i/
K g v ' 20
.7. Evaluate 213i . (3 points) 2 7 3 0
i=1 7/0 :m ; ; , E, I) '2’ II 10. I: 1'5
.Lb 17‘ 8. State the degree and leading coefﬁcient of the polynomial function f (x) = ‘—‘_’_2x7 + 3x5 + 4. (1 point each)
Leading Coefﬁcient: “2— ‘ Degree: 7 9. Given the ﬁmction g(x) = , ﬁnd the domain of function g, g(0), g(1/2) and g(xz). Simplify your answer if needed. (2 points each) Domain: X?’ l4 Ll
git/L3; Lu 1 ~37 : '/7 g(0)= O
V7]_L( 7/ ‘ l/
Xi. g(1/2): 7
ADC? 5" [)5’:
K g(x2)= x52!
10. Ifﬂx) = x2 + l and g(x) = x— 2 , find: (3 points each)
L
a.)‘(/+g)<x) : x31 ,L >02 : 234 xv. (MW): Li;
13) (fXgXZ) I $41)!)(zg : go i: 0, (.i’suwn : Q
~ ‘L L 1.
c.) f(g(x)) ' H m) basz 4 I x «wwm {/3le :2 " ' z E A _ 2 ,
d) (8°f)(x) 1 §(1le\) t 3(K M) : XL) 11, (6L4 )(A)  x _ \ 11. Find the inverse of the function below if it exists, showing all appropriate steps. If the inverse doesn’t exist, so state. (Spoints)
1. 1><« 7 M t \/ ‘ A! _ Ar?
"g/(X) 1) Inf—"Hwhné \/v)’—7 v 2X Z 2’
.Su £063 ill/toe Vi? 5 X
/ 1
mm moan/L. vi )(f 7
J3 (2‘) : —— 7/ 12. Given the equation: = 5 — 2x2: (8 points) y r.
y a.) Sketch the graph on the axes at right.
b.) Identify the intercepts _  r:— ‘
o x intercept: )cx .L—f/l 1 5} o y intercept: (O, S )
0.) Based on your graph, is y a function of x? Z? 5 d.) If y is a function of x, is it onetoone? p9 ’ l '13 WA is“ i" S d“ 3
e.) If y is a function of x, what are the domain and range?
0 Domain: «LIZ; X
0 Range: (” PO ) V39! C: Ski/Xi ’Z/UI i XL 1‘ KW: , so? X14}: \/ 1: g” 13. Graph the case deﬁned function below on the axes provided. (4 points) x+1if0$x<7 WW {5 \M W lb 6”“ ‘l / Pr 21¢
//> »‘ MN“ .
/ , . .
r’ , I 1 «7?.
, x , , 1
., I, I ( ‘7? >0 t» I, \ r
k, a 41 r
L .21 ,.. if \{1 51/
\ / i l "I 14. Complete the table below indicating the types of symmetry of the graph of each equation. The ﬁrst row is completed to
illustrate an appropriate response. (1 point each cell) ‘— Etluation axis_symmetty xaxis immetgy oﬂ'gi'n Mmetﬂ y = 5x NO NO YES
y = x2 — 4 i _ _ Ye ; M 0 Ni ‘ 2 2
x + xy + y = t N N I, i6 3 y = x2 — 25 ...
View
Full Document
 Spring '08
 SMITH

Click to edit the document details