This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: “walkT3813 Section: ALL Nm__L<2f.__
Slaw Wan Work to uceivecreﬁ: on «1! problems andplam your «mum in the blank provided. mint vain, ofeach problem f5 limmtﬁcpmbimmmc Wmmdmwﬁwwsm 1352, LlfmmixA = 2 1 4 3 findanandmesizeoi A: (2mimseach) an: 4'
7 2 0 8
Sheath; 3 x4 26mm: Z],B=[*01 “3,0: [’12 ‘01 [1)] ,and 13L: $],findeachofthefgﬂowmgz
(490iﬂt8mh) 3
a.) A7 4’ 3]
b.) A+ZB ‘ Y” «a H :£%‘2]+H’]<~E§Zj 3 .1  0
)BC
c 13») ,«a »i 0 3 Q 1  ‘7“
‘3 i [i ‘3 1 d. o 1]
d)BI ‘ I
’1 ’2] 4, 0 Ti '2
o ’1. O 1 C d 0 ’1,
3Wﬁtea2 2Wwithauﬁesa=i ‘ * [ 3 3]
' " r; +J'(4P01m$}
0‘11: 1‘1 «31:24. ‘ 3 4
Q1 1‘1") muzzlya 4. Completeeachotpdw follwing: (a: 3mm, b: Spoims)
a.) lfAis33X4mmandBisa4XSmmmeuthesizeofABis 31'! L b.)1f Aisasx 7 maxﬁxamlBisaﬁx 3mmisﬂaemauixmultipllcadonmpossible? MO Explain:
hwuust 7 , wanprHéa :3 rmi' [Orij ELL 5. Solveeachsystemofmmulwmmmmmmmmmmmummm of x We!!! if necessary. {6 points teach) Y 3
32’
+
~<
i!
w
u H
«bu ‘ R ,,‘3‘. ,_ ..
43 i “E 1/6 5 32:
P3:3; 1"9[;‘]5i1:§**[10f3] o 1 4
b.) x + y ~ 22 =0 {MWWMywimwmﬁcﬂmmﬂxﬁmwﬁm X 3 Z
t 23* 33!  5230 Y: Z
‘* Z :2
E 'L 1 *9 0* RVJM 1i L ’3 o A .3
:3? 31 3 “5,0 4 E0 1 L}oji‘5)[1$—%
3 ~ 3‘5 1 J 5‘ 1L 1 '2 Fifi?) i 0 Vi M
33E3‘5 [0&4] 311‘9Yf 6. Classify eachofthefoliowing asTnumr Fahhycimlingthe appropriate letter. (2 paints each) Z: E
a o 3 o '
'1‘ @ a.)lfaredncedmirixfarauuearsysmmis[0 1 2 0 ,mzhesystemhasnosomﬂm.
o o o u
T MAWoussymmofmmﬁnwequmwmNahawmhaexxﬁymwm.ﬂmumalwlmm. 7 a.) WﬂumesystemofequadmsbelowasammequaﬁoninlheformAx=B: (21mins)
x+3y==2 [1 3HXJ,_[:>
x+2y==s MatrixEQLmion: 1 3 ' 5.) Find the ﬁrm, that is A“. for the coefﬁcient matrix A from part 73 above. (swims) 13 M @345 1310 £544.31?) u.
{i <3 ‘31 [o 414 iji'i A4: 3.3
RI!“ 1 0e; 3 i [a 1‘14
X331 3. The region inﬂamed in the diagram below is best descﬁbed by: (0mm medium) (5 points) 3: 2:: y 2x y<2x y 2:: y 2):
(I D
A) x+y>1 B} x+y 1 ) x+y>l ) x+y>1 E) x+y 1 9. Maximize 2. = 4m + y mjeazocomm «x + y :51. 2x + y g 10, x30, yzousingeachmethad below. a.} Linear Wing. Graph the consumints. the feasible region, and complete each portion of the work
idemiﬁed belaw: (13 points) Indicate whetbaryou left the feasibie’region shaded or @ {Circle one.) _, Coordinates cf veriﬁes (mm) offeaslbte region:
0* " ( 5) 0 > . wax) /' ﬂ 4 Processtomaximizez: mid”. “Jar?”
C “'7 (0,. v) v pnm+ a: ‘1 45m 7110 lo 3 Z: “3 4' ‘1 '3 I 1:»
Wine afz and coordinates at the maximum: Wu «.4; (5,229 (Problemrestatemem; Maximize Z = §x+y subjmroconsmim ~x+ y 511.22: + y 5. 10.x210, yga) ’4x*)/+Z’30 b.) m W MM: (13 points) Weanstminu W m equations with shack Maﬁa; hare: (Yw may work withxaadyorwim x. and x; in place
ofxﬁrifyouwish) ‘ “)4 4A] *§¢S 1.
a)! 4’5} {WWTGMQ’ “Mac.
*1 *1. 1 a .1, 1
b Ravi ~1 i i a 0 I i]
@i D 1" 0 i.” w“; L ‘/1 O ‘A n 1:
“m7 ""” “"3 3" 1'3 0 O Rama. 1 Va 0 up as 18. W Smart: A mamfacm produces two pmdum, pmduct A and pmducz 3. Both pmdmts require processing on Machine I and
II. The number of hours waded to produce am: mix is given in the chart beiow. Machine I is available for at most 1140
hours per month and Machine I! is available for at most 1200 hours per womb. The profit made on product A is $15Iunit am: the proﬁt made as: precinct B is “Wank. Find the production level that will maximize proﬁt and ﬁnd the
maximum profit. leymfaMamdmwtheobjecdveﬁImﬁmmmmmmm Dom:th (9 [30%) u
m. 1
£5 '
Unlmownswe precise): Constraints: 1* 4’ 4’ é 0
x: 53mm “C PIJM‘? A puck:th 3x *4 i j 00 y: wanker a; Praduc" 530/0chch x 2;} y EU Objective Funcﬁom m ...
View
Full Document
 Spring '08
 SMITH

Click to edit the document details