{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

CW 16 - Class 1 Solubility Terminology Us Soluble 903 M...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Class Worksheet 16 71 1. Solubility Terminology. Us . Soluble - 903;] M Moderately Soluble O4 I M > . > 0 — 00; P1 a Slightly (or Sparingly) Soluble ’10ng > C - a > [Cl—é M Very Slightly (01' Very sparingly) Soluble I’D-'6 M I: :3 “NQ/Vui" ‘ci’ior ting/UK How would these be described ? (based on the solubilities calculated previously) AgCl in water(1.3 x 10'5M) g1,-7Ml:t will}. \n U Ag2CrO4 (6.5 x 10-5 M) Insoluble AgClinO.lMHCl(l.8x10‘9M)'v 1 r -- a. Len Ca(0H)2inwater(0.025M) flaggh air! E: Elton. 2. Metal Ions as Lewis Acids. (a) Precipitation: {374’ +13? _..3, $1 Cl Cs) 13f _ 13 (b) Formingasolution: 4 + CA (HZ 03 Nanfs) +mH20H> Naflflm’gz 3 Fl L (c) Solid Ionic Hydrates Ongou co Jrs’HLO #7 Com.- “20(3) meiv-ows V EM '3‘»! (d) Hydrated metal Ions as Bronsted Acids (proton donors): 2+ H2). 3 Ar Hgo Ct: M; 0+ '4' Q L“) H95“) H) ' ‘0 Kc; 7.. q x 1 0” mar +l y'an evenings magi. an. gwwxu Mai, (wu— ay-MQ past: 3. Qxideg as Acids and Bases. (a) Metal oxides hydrate to basic hydroxides: m 9,; Z N a: + Z 0 H NM 0 + H10 F—> 2 Na air/13m who pl- (b)Nonmeta1 oxides hydrate to acidic hydroxides: pr .2. w (102+ 542—0 <"’ Haw} (my) t”;— LM / S 0 + Hbo El 03 Oval Ml 2" i w 03’ SO 4" H20 Q [HZ—30L.f P‘TJQMWoi—£fi~| 4. The Effecgof pH on Solubility. (Another application of Le Chatellier’s Principle.) 1 I fit“ Mal WMAJ’M‘L/Lv [W 0H7) (Log—1’ SL—Mi gldLb, a? g M ’j 00) L aha Give NIE for these mixtures. The solid in each case is only slightly soluble in water. (a) Mg(0H)2 (S) + HCKaCD (0 +9». , M3 4— H3 OTU— U— H 0 , + L (0 Maggi-‘34:} 0(aij H’ (b) Mg(0H)2 (s) + HAc(aq) IMaQ) H); *1,“ fir (._ (c) CaCO3 (s) + HCl(aq) + C: 1' 749 Mi :9 60.003 C53 *1”; O ~_> _ A; new Maia (Loom + their -—> 03'” Moo: 4: (d) CaCO3 (s) + HAc(aq) - .— W 00cm; t HAT. Carl—\— HC/Ogfl + AC KMIO’3 awHth') 30; 0km; e Sadie a use i (e) AgCI (S) + HN 3 (ac!) , - $30k. ~r H30fN9;—"‘> N ' .p " . a (- __ WI .09 “mi. Wm; a a?“ Page 3 CLASS WORKBHEET 16 5. A 100. mL sample of 0.10 M HZC3H204 (malonic acid, H2M, a diprotic acid is to be titrated using 1.0 M NaOH. Kal 1.5 x 10'3, Ka2 = 2.0 x 10‘5 (a) Complete the table, calculating the “principal specie" [...1 values and the pH for several points in the titration. Assume the total volume reamins at 100 mL throughout. _ VNEOH Solution Contains (principal species) Type of Soln pH . L q o.mL [HEM] a 0.10 M Duk— KA‘OAKT 1"” p’ - 9t; :28: 5 mL [32M] = 0- 05M. [HM'1 uro'ogvM 8%” \ 0“ [Nail é Q'Q§$4 10 mL" \gp [HM-1:.O-10MWchkmc [Na] = wlm . MM” 15 mL [m‘] = 0'90». [W2] = 0'05“ 3511; Km WT= 9.121%. Bwjfih ' P 2 20 mL* “0k ' [M‘2] = QAOM' NB _ Q— ‘Q E? [Na+] = Q.gnm- Cougar-7 3 25 my [on‘] = O'OSM , {M'21 = 040M ggnog \2'1 “‘[N‘EFT = 9-294 - - 1’30 30 mL [Na"'] = 40?} [M 2] . 40M . SBnoB Na = ~ L * Equivalence points. (b) Plot the results from the above table:' 14 (c) How do we calculate the pH for HM', an amphoteric specie? H; Fro—1 +FKO‘L. '2-(37+§”1 ? u .. ; ‘flfip 3;. 4,3 (d) Wh§9”acid/base indiggtggg should be used to detect the two equivalence points? - rdA —/ 9- g I ' \St’ EEA’ II;}HDPY¥9QF4#MOX~ iyutxe~i }/ £1 'g,J .— ;)L<f1\ " ...
View Full Document

{[ snackBarMessage ]}