day5prlm

# day5prlm - 2/11/12 1 PADP 8130: Linear Models Hypothesis...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2/11/12 1 PADP 8130: Linear Models Hypothesis Tes,ng PRACTICE Angela Fer9g, Ph.D. Standard error . sum agehd Variable | Obs Mean Std. Dev. Min Max-------------+-------------------------------------------------------- agehd | 8689 45.20394 16.48979 17 104 . reg agehd Source | SS df MS Number of obs = 8689-------------+------------------------------ F( 0, 8688) = 0.00 Model | 0 0 . Prob &gt; F = . Residual | 2362380.63 8688 271.913055 R-squared = 0.0000-------------+------------------------------ Adj R-squared = 0.0000 Total | 2362380.63 8688 271.913055 Root MSE = 16.49------------------------------------------------------------------------------ agehd | Coef. Std. Err. t P&gt;|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- _cons | 45.20394 .1769009 255.53 0.000 44.85717 45.5507------------------------------------------------------------------------------ What is the diference conceptually? 2/11/12 2 Confdence Interval . reg agehd Source | SS df MS Number of obs = 8689-------------+------------------------------ F( 0, 8688) = 0.00 Model | 0 0 . Prob &gt; F = . Residual | 2362380.63 8688 271.913055 R-squared = 0.0000-------------+------------------------------ Adj R-squared = 0.0000 Total | 2362380.63 8688 271.913055 Root MSE = 16.49------------------------------------------------------------------------------ agehd | Coef. Std. Err. t P&gt;|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- _cons | 45.20394 .1769009 255.53 0.000 44.85717 45.5507------------------------------------------------------------------------------ 45.20394 - 1.96*0.1769009 = 44.8572 45.20394 + 1.96*0.1769009 = 45.5507 T-test Example 1 . reg agehd Source | SS df MS Number of obs = 8689-------------+------------------------------ F( 0, 8688) = 0.00 Model | 0 0 . Prob &gt; F = . Residual | 2362380.63 8688 271.913055 R-squared = 0.0000-------------+------------------------------ Adj R-squared = 0.0000 Total | 2362380.63 8688 271.913055 Root MSE = 16.49------------------------------------------------------------------------------ agehd | Coef. Std. Err. t P&gt;|t| [95% Conf. Interval]-------------+---------------------------------------------------------------- _cons | 45.20394 .1769009 255.53 0.000 44.85717 45.550745....
View Full Document

## day5prlm - 2/11/12 1 PADP 8130: Linear Models Hypothesis...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online