Study guide 2

Study guide 2 - MA 261 - Fall 2010 Study Guide # 2 1....

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 261 - Fall 2010 Study Guide # 2 1. Relative/local extrema; critical points ( ∇ f = vector or ∇ f does not exist); 2 nd Derivatives Test: A critical points is a local min if D = f xx f yy − f 2 xy > 0 and f xx > 0, local max if D > 0 and f xx < 0, saddle if D < 0; absolute extrema; Max-Min Problems; Lagrange Multipliers: Extremize f ( vector x ) subject to a constraint g ( vector x ) = C , solve the system: ∇ f = λ ∇ g and g ( vector x ) = C . 2. Double integrals; Midpoint Rule for rectangle : integraldisplayintegraldisplay R f ( x,y ) dA ≈ m summationdisplay i =1 n summationdisplay j =1 f ( x i , y j ) Δ A ; 3. Type I region D : braceleftbigg g 1 ( x ) ≤ y ≤ g 2 ( x ) a ≤ x ≤ b ; Type II region D : braceleftbigg h 1 ( y ) ≤ x ≤ h 2 ( y ) c ≤ y ≤ d ; iterated integrals over Type I and II regions: integraldisplayintegraldisplay D f ( x,y ) dA = integraldisplay b a integraldisplay g 2 ( x ) g 1 ( x ) f ( x,y ) dy dx and integraldisplayintegraldisplay D f ( x,y ) dA = integraldisplay d c integraldisplay h 2 ( y ) h 1 ( y ) f ( x,y ) dxdy , respectively; Reversing Order of Integration (regions that are both Type I and Type II); properties of double integrals. 4. Integral inequalities: mA ≤ integraldisplayintegraldisplay D f ( x,y ) dA ≤ MA , where A = area of D and m ≤ f ( x,y ) ≤ M on D ....
View Full Document

This note was uploaded on 03/14/2012 for the course MATH 261 taught by Professor Gabrielov during the Fall '10 term at Purdue.

Page1 / 3

Study guide 2 - MA 261 - Fall 2010 Study Guide # 2 1....

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online