{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

a3sol 242

# a3sol 242 - SOLUTIONS TO ASSIGNMENT 3 ANALYSIS 1(MATH 242...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SOLUTIONS TO ASSIGNMENT 3 ANALYSIS 1 (MATH 242), FALL 2011 Problem 1. (a). Let Ç« > 0. | x 3- c 3 | = | x 3- c 2 x + c 2 x- c 3 | â‰¤ | x 3- c 2 x | + | c 2 x- c 3 | = | x ( x 2- c 2 ) | + | c 2 ( x- c ) | = | x || x- c || x + c | + c 2 | x- c | . If | x- c | < 1, then | x | â‰¤ | c | + 1, and | x + c | â‰¤ 2 | c | + 1. Then, | x || x- c || x + c | + c 2 | x- c | â‰¤ [( | c | + 1)(2 | c | + 1) + c 2 ] | x- 1 | < Ç« if Î´ = min braceleftbigg 1 , Ç« [( | c | + 1)(2 | c | + 1) + c 2 ] bracerightbigg . (b) . Let Ç« > 0. vextendsingle vextendsingle vextendsingle vextendsingle x 2- x + 1 x + 1- 1 2 vextendsingle vextendsingle vextendsingle vextendsingle = vextendsingle vextendsingle vextendsingle vextendsingle 2 x 2- 3 x + 1 2( x + 1) vextendsingle vextendsingle vextendsingle vextendsingle = vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ( x- 1 2 )( x- 1) x + 1 vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle If | x- 1 | < 1 , | x + 1 | > 1 and | x- 1 / 2 | â‰¤ | x- 1 | + 1 / 2 < 3 / 2, so vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ( x- 1 2 )( x- 1) x + 1 vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle â‰¤ vextendsingle vextendsingle vextendsingle vextendsingle x- 1 2 vextendsingle vextendsingle vextendsingle vextendsingle | x- 1 | < 3 2 | x- 1 | , So if Î´ = min { 1 , 2 Ç« 3 } , the last term is smaller than Ç« , and the claim is proved....
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

a3sol 242 - SOLUTIONS TO ASSIGNMENT 3 ANALYSIS 1(MATH 242...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online