{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# ch 05 - Chapter5 TimeValueofMoney FutureValue PresentValue...

This preview shows pages 1–14. Sign up to view the full content.

Time Value of Money Chapter 5 Future Value Present Value Annuities Rates of Return Amortization 5-1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Time Lines Show the timing of cash flows. Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the first  period (year, month, etc.) or the beginning of  the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 I% 5-2
Drawing Time Lines 5-3 100 100 100 0 1 2 3 I% 3 year \$100 ordinary annuity 100 0 1 2 I% \$100 lump sum due in 2 years

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Drawing Time Lines 5-4 100  50  75 0 1 2 3 I% -50 Uneven cash flow stream
What is the future value (FV) of an initial \$100  after 3 years, if I/YR = 10%? Finding the FV of a cash flow or series of  cash flows is called compounding. FV can be solved by using the step-by-step,  financial calculator, and spreadsheet  methods. FV = ? 0 1 2 3 10% 100 5-5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Solving for FV: The Step-by-Step and Formula Methods After 1 year: FV 1 = PV(1 + I) = \$100(1.10) = \$110.00 After 2 years: FV 2 = PV(1 + I) = \$100(1.10) 2  = \$121.00 After 3 years: FV 3 = PV(1 + I) = \$100(1.10) 3  = \$133.10 After N years (general case): FV N = PV(1 + I) N 5-6
Solving for FV: The Calculator Method Solves the general FV equation. Requires 4 inputs into calculator, and will solve  for the fifth. (Set to P/YR = 1 and END mode.) 5-7 INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 133.10 -100

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
What is the present value (PV) of \$100 due  in 3 years, if I/YR = 10%? Finding the PV of a cash flow or series of cash  flows is called discounting (the reverse of  compounding). The PV shows the value of cash flows in terms  of today’s purchasing power. PV = ? 100 0 1 2 3 10% 5-8
Solving for PV: The Formula Method Solve the general FV equation for PV: PV = FV N   /(1 + I) N PV = FV 3   /(1 + I) 3 = \$100/(1.10) 3 = \$75.13 5-9

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Solving for PV: The Calculator Method Solves the general FV equation for PV. Exactly like solving for FV, except we have  different input information and are solving for  a different variable. 5-10 INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 100 -75.13
Solving for I:  What interest rate would cause  \$100 to grow to \$125.97 in 3 years? Solves the general FV equation for I. Hard to solve without a financial calculator or  spreadsheet. 5-11 INPUTS OUTPUT N I/YR PMT PV FV 3 8 0 125.97 -100

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Solving for N:  If sales grow at 20% per year,  how long before sales double? Solves the general FV equation for N. Hard to solve without a financial calculator or  spreadsheet. 5-12 INPUTS OUTPUT N I/YR PMT PV FV 3.8 20 0 2 -1
What is the difference between an ordinary  annuity and an annuity due?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 44

ch 05 - Chapter5 TimeValueofMoney FutureValue PresentValue...

This preview shows document pages 1 - 14. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online