HW06-solutions

# HW06-solutions - wei(jw35975 – HW06 – kalahurka...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: wei (jw35975) – HW06 – kalahurka – (55230) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 1 2 x- 10 x 2- x- 2 dx . 1. I = 6 ln2 correct 2. I =- 2 ln 3 3. I =- 6 ln 2 4. I =- 6 ln 3 5. I = 2 ln3 6. I = 2 ln2 Explanation: After factorization x 2- x- 2 = ( x + 1)( x- 2) . But then by partial fractions, 2 x- 10 x 2- x- 2 = 4 x + 1- 2 x- 2 . Now integraldisplay 1 4 x + 1 dx = bracketleftBig 4 ln | ( x + 1) | bracketrightBig 1 = 4 ln2 , while integraldisplay 1 2 x- 2 dx = bracketleftBig 2 ln | ( x- 2) | bracketrightBig 1 =- 2 ln2 . Consequently, I = 6 ln2 . 002 10.0 points Evaluate the definite integral I = integraldisplay 4 1 √ x x- 9 dx . 1. I = 3 ln 5 2- 2 2. I = 2- 3 ln 5 2 correct 3. I = 2- 3 ln5 4. I = 1- 3 ln5 5. I = 3 ln 5 2- 1 6. I = 3 ln5- 1 Explanation: Set u = √ x . Then u 2 = x, dx = 2 u du . In this case I = integraldisplay 2 1 u (2 u ) u 2- 9 du = integraldisplay 2 1 2 u 2 u 2- 9 du . The partial fraction decomposition is needed. First we divide: u 2 u 2- 9 = u 2- 9 + 9 u 2- 9 = 1 + 9 u 2- 9 = 1 + 9 ( u- 3)( u + 3) . But 1 ( u- 3)( u + 3) = 1 6 braceleftBig 1 u- 3- 1 u + 3 bracerightBig . Thus I = integraldisplay 2 1 braceleftBig 2 + 3 u- 3- 3 u + 3 bracerightBig du = bracketleftBig 2 u + 3 ln vextendsingle vextendsingle vextendsingle u- 3 u + 3 vextendsingle vextendsingle vextendsingle bracketrightBig 2 1 = 2 + 3 braceleftBig ln 1 5- ln 1 2 bracerightBig . wei (jw35975) – HW06 – kalahurka – (55230) 2 Consequently, I = 2- 3 ln 5 2 . 003 10.0 points Evaluate the integral I = integraldisplay 1 4 x 2 ( x + 1)( x 2 + 1) dx . 1. I = 2 parenleftBig π 2- ln 2 parenrightBig 2. I = ln 2 + π 2 3. I = 2 parenleftBig ln 2 + π 2 parenrightBig 4. I = 2 parenleftBig ln 8- π 2 parenrightBig 5. I = ln 8- π 2 correct 6. I = π 2- ln 2 Explanation: By partial fractions, 4 x 2 ( x + 1)( x 2 + 1) = A x + 1 + Bx + C x 2 + 1 . To determine A, B, and C multiply through by ( x + 1)( x 2 + 1): for then 4 x 2 = A ( x 2 + 1) + ( x + 1)( Bx + C ) = ( A + B ) x 2 + ( B + C ) x + ( A + C ) , which after comparing coefficients gives B =- C , A =- C , B = 2 . Thus I = 2 integraldisplay 1 parenleftBig 1 x + 1 + x- 1 x 2 + 1 parenrightBig dx = 2 parenleftBig integraldisplay 1 1 x + 1 dx + integraldisplay 1 x x 2 + 1 dx- integraldisplay 1 1 x 2 + 1 dx parenrightBig , and so I = 2 bracketleftBig ln( x + 1) + 1 2 ln( x 2 + 1)- tan- 1 x bracketrightBig 1 = bracketleftBig ln(( x + 1) 2 ( x 2 + 1))- 2 tan- 1 x bracketrightBig 1 . Consequently, I = ln 8- π 2 . 004 10.0 points Evaluate the definite integral I = integraldisplay 1 3 x 2- 5 x + 1 x 2- x- 2 dx ....
View Full Document

## This note was uploaded on 03/26/2012 for the course MATH 408 L taught by Professor Zheng during the Spring '10 term at University of Texas.

### Page1 / 9

HW06-solutions - wei(jw35975 – HW06 – kalahurka...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online