SupplementaryHW

# SupplementaryHW - MAP 2302 Differential Equations I...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MAP 2302 Differential Equations I Supplementary Homework Problems 2-2 Separation of variables Solve the following differential equations by separation of variables: 1. dy dx = cos3 x 2. dy + e 2 ydx = 0 3. ( x- 1) dy dx =- x + 1 4. x 2 y =- 2 y 5. dx dy = x 2 y 3 1 + x 6. dy dx = e x- 2 y 7. (1 + x 2 + y 2 + x 2 y 2 ) dy = y 2 dx 8. ( y ln x ) dx dy = ‡ y- 1 x · 2 9. sec 2 xdy- csc ydx = 0 10. e y sin3 xdx + ( e 2 y + y )cos xdy = 0 11. dy dx = xy + 3 x- y- 3 xy- 2 x + 4 y- 8 12. dy dx = sin x (cos2 y- cos 2 y ) 13. x p 1- y 2 dx =- 2 dy 14. ( e x- e- x ) dy dx = y 2 Solve the following initial value problems: 15. ( e- y + 1)sin xdx = (1 + cos x ) dy, y (0) = 1 16. ydy = x ( y 2 + 1) 1 2 dx, y (0) = 1 17. dy dx + xy = y, y (1) = 0 18. dy dx = y 2- 1 x 2- 1 , y (2) = 2 1 2-3. The first-order linear differential equations Solve the following linear equations: 1. dy dx = 4 y 2. 2 dy dx- 10 y = 3 3. dy dx + y = e 2 x 4. y + x 2 y = x 2 5. ( x- 4 y 2 ) dy + 3 ydx = 0 6. 2 xdy = ( x cos x- y ) dx 7. x 3 y + xy = 1 8. (1 + e x ) dy dx + e x y = 0 9. sin x dy dx- y cos x = 1 . 10. x dy dx + 3 y = x 2- x 11. x 2 y- x ( x + 1) y = e x 12. ydx + ( x + 2 xy 2 + 2 y ) dy = 0 13. cos 2 x sin xdy + ( y cos 3 x- 1) dx = 0 Solve the following initial value problems: 14. y = 2 y + x ( e 2 x- e x ) , y (0) = 1 15. xdy + ( xy + 2 y- 2 e x ) dx = 0 , y (1) = 0 16. x ( x- 2) y + 2 y = 0 , y (2) = 2 17. sin x dy dx + y cos x = 0 , y ‡- π 2 · = 1 18....
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

SupplementaryHW - MAP 2302 Differential Equations I...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online