lec4_3

lec4_3 - NOTES ON SECTION 4 . 3 MA265, SECTIONS 41, 52 Some...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: NOTES ON SECTION 4 . 3 MA265, SECTIONS 41, 52 Some key words Subspace Zero subspace subset parametric equation Closure linear combination null space 1. Subspaces A subspace of a vector space is a subcollection W of the objects of a vector space ( V, , ) which themselves form a vector space when you use these operations (that is, ( W, , ) is itself a vector space). Definition 1. A subspace of a vector space ( V, , ) is a subset W V such that (1) For every u,v W , u v is also in W (2) For every u W and scalar r R , r u is also in W . We said that ( W, , ) should be a vector space, and in fact the above definition implies that this is the case. That is, one can deduce by going through the axioms one by one (see Theorem 4.3 in the text): Theorem 2. If W is a subspace (as defined above), then ( W, , ) is itslef a vector space. Example 3. Zero subspace (ex.1 in text) Example 4. Polynomials of degree less than or equal to 4 in the space of all polynomials. Or P n [ x ] P m [ x ] for n < m . Example 5. The set of points in R 2 x y satisfying the condition (1) x is NOT a subspace (2) x + y is NOT a subspace (3) x = 0 IS a subspace...
View Full Document

Page1 / 2

lec4_3 - NOTES ON SECTION 4 . 3 MA265, SECTIONS 41, 52 Some...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online