{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ECS221L29a

ECS221L29a - • k A B y C x y D x u = u u = u aω u = u...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
    STATICALLY INDETERMINATE PROBLEMS II Summary: Rigid body equilibrium Kinematics of infinitesimal rigid displacements ( u = u 0 + ϖ × r ) Lumped support models e.g. linear and torsional springs x y P F = 0, F = 0, M = 0 x 0x y 0y u = u -ωy, u = u + ωx plane Cartesian compon ents sp sp linear spring relation F = ku torsional spring relation M =βω
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Three Dimensional Problems Rigid body equilibrium Kinematics of infinitesimal rigid displacements u = u 0 + ϖ × r Lumped support models e.g. linear and torsional springs P F = 0 , M = 0 sp sp linear spring relation F = ku torsional spring relation M =βω
Background image of page 2
    The Table Top Four unknown reactions: R A , R B , R C , R D Three equilibrium equations: One Force Constraint Equation x y P z A B C D a b z x y F = 0, M = 0, M = 0
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    The Table Top Equilibrium: x y P z A B C D a b A B C D B C P C D P R + R + R + R = 0 -aR - aR + x P = 0 bR + bR - y P = 0
Background image of page 4
    The Table Top Force Constraint: u = u 0 + ϖ × r x y P z A B C D a b ( 29 ( 29 0 z 0z x y u = u + ω×r u = u +ω i + ω j× xi + y j
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: • k A B y C x y D x u = u , u = u - aω , u = u + bω - aω , u = u + bω ⇒ C A B D A C B D A C B D R R R R u + u - u - u = 0 +--= 0 k k k k Force Constraint Equation The Table Top x y P z A B C D a b C A B D A C B D R R R R +--= 0 k k k k Force Constraint A B C D B C P C D P R + R + R + R = 0-aR - aR + x P = 0 bR + bR - y P = 0 Equilibrium 4 equations for 4 unknowns! The Table Top (equal stiffnesses) Non-dimensional variables Solution x y P z A B C D a b , ε P P A A B B C C D D ξ = x a, η = y a, = a b, r = R P, r = R P , r = R P r = R P ( 29 ( 29 ( 29 ( 29 A B C D 3 1 1 1 r =-ξ + εη , r = + ξ - εη , 4 2 4 2 1 1 1 1 r = -+ξ + εη , r =-ξ - εη 4 2 4 2 Are there points where the load can be applied where 1 or more reactions vanish? YES!!!...
View Full Document

{[ snackBarMessage ]}

Page1 / 7

ECS221L29a - • k A B y C x y D x u = u u = u aω u = u...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online