5.4.23-eg - Example Evaluate the definite integral 1 |x +...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Example Evaluate the definite integral 1 |x + 1| dx. −2 Solution: From the definition of the absolute value, |x + 1| = (x + 1), x + 1 ≥ 0 −(x + 1), x + 1 < 0 = x + 1, x ≥ −1 −(x + 1), x < −1. So it follows that −1 1 1 −1 −2 −2 |x + 1| dx |x + 1| dx + |x + 1| dx = −1 =− 1 −1 −2 x2 =− +x 2 2 =− =− −1 + −2 x2 +x 2 1 −1 2 (−1) (−2) 12 (−1)2 + (−1) − + (−2) + +1 − + (−1) 2 2 2 2 1 1 1 − 1 − (2 − 2) + +1 − −1 2 2 2 1 +2 2 5 =−. 2 = (x + 1) dx (x + 1) dx + ...
View Full Document

Ask a homework question - tutors are online