{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

solutions_502_03

# solutions_502_03 - (1.0 4.41 accmquLaJ L E S‘OL(ATTON S...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (1.0;; 4.41, accmquLaJ L) E S‘OL (ATTON S MATH 323-502, QUIZ 3. Fall 2010 NAME___________._____ , R0W_____._ _____________ Show all steps for credit. Q1. (3 pts.) For 1 1 A: ‘1' 2 . 3 2 ODNl—i ) ﬁnd elementary matrices E1 , E2, and E3 so that E3E2E1A is upper triangular. 1 ( fr?! {1 l 7/7’ -§ all ~> 3‘ 124 l 6 C ,. q o / 2: (’ 0 (- 7’ 0’9 ’33 *3 E" (((i 04 3 ﬁ3+ f; Q2. (4 pts.) Let A, B, and C’ be 3 x 3 matrices with ‘determi'nants repectively 4, 3, and 2. Find the determinants of (i) AB (ii) 0’1 (iii) BTC (iv) 2A. (1; cﬂtﬂﬁﬁaﬁtﬂ at“: 2 I“: X’C~(:_.L-'*“-—'.(/ (14,,(8 OLA—C 2/ fa) yak/efdthSTMC—éiﬂl A“. “ EM ( 2, / (my oh? 2A 7. few/A —_ QKH "J 12:.” Q3. (3 pts) Find 1212 0124 0112 0002 «Vet {1:2 :‘ 0.2u :: ‘K{"(~(\K?’;_._——w2‘ 004/1- lo 50 7’ ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

solutions_502_03 - (1.0 4.41 accmquLaJ L E S‘OL(ATTON S...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online