{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Math211ExamII_f04

Math211ExamII_f04 - MATH 211 EXAM II 1)Determine for the...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 211- EXAM II -OCTOBER 20, 2004 1 )Determine for the planes x-y—z=1 and 2x+3y-Z=5 a)The equation of the line of intersection b)The angle between the two planes 2)Determine for the position vector R = (t2 + l)i + t3 j +(t — 2)k , a)The acceleration vector at t=1 b)The equation of the plane containing the acceleration and velocity vectors at t=1 3)Evaluate the limits if they exist (show all work) a) lim xy (mam) 4x2+4y2 b lim xy ) (xy)+(0.0) 4x2+4y2 c) lim (xy>»<o,0) x2” 4)For the function 2 = x + 1n y + xy2 cosx Evaluate at the point (%, 2) Oz a) E 622 b) 6xr3'5y a 2 C) 6x¢9y2 5)Determine the local extrema locations (critical points) for a)z=xy2+ %+y2+10 h) z = 2(x +1)2 +302 — 2)2 + 602—2) 6)Determine, using the chain rule, for w = xez + zy a)??? at t=1, where x=+, y=t3 and z=t-1 b) a_w at u=l and V=l, where x=u2+v , y:uv2 2 2 av ,z=v —u ...
View Full Document

{[ snackBarMessage ]}