extra_problems_5

extra_problems_5 - band] 211» mar/5:5 E] 1.Terry lends...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: band] 211» mar/5:5 E] 1.Terry lends Sandy $1000 at a loan rate of 12% compounded monthly. During the first year Sandy makes payments of $200 at the end of the second month and $900 at the end of the ninth month. Calculate the outstanding loan balance at the end of the first year. ~ Ha". I? - J 2 I}: 7;“; law mbymfi ,1 n9 ’3 a 4.2% fl . p ,— Cy 9») . » ,)_, 2 ’ icwuw) ~»- Maw) ,. Um 1W lfiw W egbwaf'm 5 WM};- rany MW] W fie/{4+ mite. 2. A loan is being amortized over n years with level annual payments. In years t— 1 and t$900 and $936 in principal were paid respectively. Calculate how much principal will be paid in year 1 + l. \ ., [Mr i w 'é I” i ‘ yé (“Mm fl: M ()2 V ’2 V '3: 3T" 43' : 1&9“ LL? MM fl @MW * 6*") c3790 ‘9»: (>1 6/ " """"""""""""""""" ‘iw. “”’ . My“ PH“! ‘7: UT'Ier—I liw'fi (7%) «1‘ 9?”);ms U - [‘N‘Mfiflxy TE] 3. Karen buys a $200,000 house. She puts down 10% and amortizes the rest over 25 years at 8% compounded semi-annually. Determine Karen’s monthly payment. _ “V” K 2/; H... Mam; dqmabfl L0le itrlrég ’1... f. (gages/fiscal,“ my WW“ “ft 5%. flél2i3'13jjrmz3 21:! ,_/A/ E 4. A loan of $25,000 is being repaid by monthly payments of $500. Calculate the outstanding loan balancE fit the end of the second year assuming a loan interest rate of 7.2% compounded monthly. 3?» gift“ :. grad/g V.» W344 9‘ c a.“ a "7 JV .qu/ Z , m 4M} L)“ 4‘5"“ )7 43:35.0;4 i6} 77%“; \ .. 2,. . m 5. A loan of $30,000 is repaid by 32 monthly payments of $1000 plus a final smaller payment. Using an interest rate of 6% compounded monthly determine the final payment. .. g”? j 4* 150080 :_ mm Ctga'éy Ii); (1.49M? LL] VJAW '. m. «av/we X :33 :3 5m 5:: U] (\W/‘” ’2,- W) E 6. A $300,000 engage at 5% compounded semi—annually is being repaid by weekly payments of $600. How manértgarsyill it take to payoff the mortgage? / \ .... .fl/ . v. , 6 a» F; A u e‘ - t , on a I m ‘5‘ A; y‘ 7“ J ‘ " r )in w“; W “£?sa%1~z7cr2 :: @063 am; WW .1 ’C’ +92) I a» , 0950/66.? 7/5 /‘/~.,.,\ \g ( ' g L f/gym w W,»— i/l ': €17 ’1‘ ,MMK H; «flacwfiml- MHVWT +0 gm)»; "/‘#IM‘\/’ ‘lm .. MWWMVW.‘ W W .3 M...»mxmmmwwwwmfl.Myflfiyfldfl/v : Www a?! ., (9967b? "” We); «mm M “W A”: “1% WM. "/62, yum...” mama IV A: ‘2... W 7. Given 1' = 6% calculate 100052—01. £6700 2002? m . 7 2' - (I m * 10 1‘} . " 5’ 0 ~. iggv 61/ I ‘ fi ‘ M v ‘___ ’5 ms- ‘ b I. M V‘) i if U3 «,7 1000 Cam «m ~ 2 «— H; 5 Me 8. Given 6 = 6% calculate 1000555,. 2:2 ‘ , ’1‘ I '16 ~ Ia— .5’0613263) . M90 “Is :15 : 7007.”: i lI/éé‘éng 5 {£6 E] @9 G' -<2) _ o | — 1"" ’1 £9? - r y» at“ . ivenz —6/ocaculate1000a§5|. < ,+;: 3 «M C: 1:; 5 0;: 2}“ ( if" ) 2.5x m ~?n(;;'.5il\> m mm a [pm w’” a 10w "'“Q'tifl ~ w ‘5 3:37” 4 ,5 " MWZW; :3 lljiié/lv”? W0. Assuming a simple interest rate of 10%, calculate 1000523. Vfi‘m'; '. , t ‘ Ml» ’— ' - ' an. ,. - ‘6' > .F, J ,r» (x: vsvf‘l WOO an 1: MOO ~+ /0(Z>L7'V(,i) w MLQU 7"“ (4)596" W“ -~ 3‘76) iii-J? when) m 7?] 11. An annuity which pays continuously at a rate of $50 per year has a present value of $500. If the force of interest is 5% determine the term of the annuity. 5 m) 2; av Ct m ’ l" 37,,_§..-/\, \ .1 “fly; 7‘ MW m \ q, a ' / l «> i LW: 14% U 62-47. d/ m. (94; m A [as 6 : t ‘3 at??? W 6 , Z; ,5, (MW 9 ~ lflmfl/V. sf: (3"? ...
View Full Document

Page1 / 2

extra_problems_5 - band] 211» mar/5:5 E] 1.Terry lends...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online