real final test

real final test - Fall 2010 EL6303 Namew (Show all your...

Info iconThis preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Fall 2010 EL6303 Namew (Show all your steps for Problems 1-8) Final Exam 1. (10 points) Y: g(X). 2, for x<—1 1, for -1$x<0 y=g(x)= —x+1, forOSxSl O, for x>1 . ., Find and draw and interms ofFX(x) and fx(x)_ fx (3‘) x Mg' V'gaC“) 0% Alum 6m cww‘) Egg fig: Vég) 3' Mfl‘al) % X£471 g >2” FY(%) 3‘ CL xé'lg) .: 3Cyl“) ' I :2 _ fill): *8“ “DC * (i) ’ I am) ’ rm: 1'” v , ~ 51 w ~ iééléz/ \I F FX(@,)Wle(HL) r a: (L 7 [:y Cal) )WAMQMflW)‘ maul ,Ffl‘é)’; “Lg ’: vfi’CX‘éW‘dl) I » . , , duflfiva) ' 4; kayz PM): RH) ‘31:?» 2 \~— F“ (71) lf'll A f h (C?) ~ EH) '3“ 'L \/ v a CH) O 4”” o 340 _ h a '2’)! l _ DAréMHHDCJwD Um W QCUW mmle UW‘ ,mcl l &0 to (\e Fx C > 2. (10 points) Find the constants A, B such that Ae'x,——1stl Bxe‘x2,OSxSZ fi(x)={ : f2(x)={ 0 , otherwise 0 , otherwise are probability density functions. 616M «Eat mmbi’mg (Emma W I! % Jfim-dx : 420. “twig: j¥I(x)‘0iY:flr a 40 i ~>~x d“: (L 9 yo 6i i 41 rd, :5 j/xei-W ”’ LHQM 1W Wflwi -4} ‘ _ .V1 1 t i x“ . V E j) __ A (E, ) 1 \/t OM? : “II/Hf :) :: flairji ~0°3C787 ‘ Gig—C, “POT E) 99 Jwidx 1'" KL "co .3 i ‘1 2 CL ,> J B?C flx‘dx ’ 4 t L O Kg 1: A w WC? : t a) :E/i 6" at i i @‘L&XZ?‘:} o 8 (CAC)A[ 2’— 4— :m ” o (Xax a: FE 3. (10 points) Box 1 contains 4 white and 4 red balls. Box 2 contains 5 white and 5 red balls. At random, we move one ball from Box 1 to Box 2. Then, at random, we pick up one ball from each box. Find the probability that both balls are white. 0+3 5W 6 , B *1 REF 1 ((1)51) Cgl) WW cote fhoo (MM, . 80x CL :90 gm 2 (D W mow M 41a“ ffim‘ at)“, 50 (ML {MHZ WAG (LU/Mile 1M {ho/MA (19% ital/JR) ‘ V New? 1» WM WDC b0 a bow (haw/3qu .anLq ‘ -—:; i) U,ka WUUZ XLOLM/ggm ‘ B [L d0 W “fig mo ) L : i549 “WW” ‘ é? ’ 02‘ pww 3 xi, (Li; 1: w P<y§§i : “47‘ OMOA (Newt) 7 %H J50 {9(5on mm m Judd/.9) / 4. (10 points) fX,(x,y)=1/7z', x2+y25k zero otherwise. Find and draw f(le=0.5) and E(Y|X=~0.5). 1% {PM <9”) : / wag“): WWW "‘9 Hm ‘o&__ H WM) “a “1:5 5 M ‘X 0 X( ’ o? r 4d OWMM “in 4662105) N” J3 \3 omflwu o ‘5” 5‘7 a?!) ab r H/ 3 g H who? a m X: MO AD {5/2 d) : f) r: j Xi \g 2 'B/ 5. (10 points) Y has a distribution with parameter A, y' ._ P(Y=yi)=l 31f! 1. Find the ML estimation of 1 when ‘ I'- y1=1.2, y2=1.4, y3=1.3, andy4=2.0. : fi 01:1 Lg} A” F” L 4 j ' mm AA ‘ZKJL » Ar mm 3 Z <6 0 ~ Liz/x53» 4 ##fl V ‘31 1 ‘31 ‘42qu L15 ‘ q 9 A b b ‘ x I “f0 (pk ML gmwrm AA (kw/CHM Mix‘f A mem Q’m Moo 2} ’ 3; 'i “M fa; M E ‘6 r -“47 j ‘ W LIT/1 d» fl Li m L031 H and WM? [93 \fi/ . W b :> 0X 1W Wh‘éflfifl‘) 50 Th 086k £5 4 6 cm 117:??1 Am «4” /3;’;‘% :) 33W /‘ y 6’ ~ 3/ , w 4r x“ 4 a (ii W / 6. (10 points) FindA and B so that AX 2+3 is the MS estimate of Y. : E ’ f 2— 3> " EO/XL) _. A EUVW’BEMJ :> : E<V>®"'B EM) -/ [9 EM“) 195% 63 (Md @ A A ;..E “W *(EW‘A HWEM) W) ‘ ‘ '3) A- W) -~ Ema- mammal) (27> E: E(Y)~(E§_XL)'E(YXL)H5005(va E ‘1 ‘ ECXU~§~(Y9 EM W > ‘ EWEWXZ ' .. ,7 ' “3/ a Z ’ {5994 MT" L JFME/wggxa 7. (10 points) X and Y are independent with exponential densities f X05) = ae‘“‘u(x)= f ,0’) = fle‘flyuO’), fl 9t 20% Find the density and distribution on=X+2Y. I .— fiv ‘ , .w- r 3* g¢2< 5M7 Jew): “gflmb My)” [36: a!) /. 2—;713’” Q I Akfi’ yaw / M W W M” / b i CL WU X&Ld0w VOdM’CLb14 tfifl %s¢%/ %w>:9‘wfi%‘3 [email protected]>:» ;fig:f§2, : i} E C U(,@) 3%») _; 6‘" Mg 005 M® 1-: ><+2Y c X039 W W Mokfwdkgfwfixaxww 33 Hm’ YaolaW/l’ 8. (10 points) The joint density fimction is given as fxy(x,y)=Ce‘xe‘y, OSny<oo; zero otherwise Find C, f X(x), fy(y) and P(x+ySl). AreX and Y independent? X and Y are uncorrelated? Prove or disprove. 9. (Multiple choice questions. ONE point each. Explanations are not needed.) V 1) Which random variable has the second greatest variance? fix)- fz(x) 1200 Y x Vg 1/2 3 fl, 4 i A x‘ PM ' C5) ’ -1 (2) 1 /bA —l (3) 1 p . 1200 ’5/9’ (3/2»:2 , (4) l/ .. 2) IfX, Yare marginally normal, the v&/ (6) X Y must be jointly normal. (a) True. VCbiFalse. ® {/J 3) In Lecture 11, "6 is a consistent estimate of 6?" is defined as n%9=9—— @ k/Qa)’ in mean square sense (b) in probability (c) almost everywhere I (d) in distribution (e) None of above \/4) If X Y are independent and normal, thean Y must be jointly normal. M True. (b) False. \/ 5) If X,, Y are jointly normal, then X; Y must be marginally normal. fir)” True. (b) False. @ \/ 6) ‘ “ “Independent” always implies “orthogonal”. (a) True. xflo’)’ False. Cb) V n The definition of “uncorrelated” is (a) P(XSx,Y.<_ y)=P(XSx)P(Ys y) (b) E{XY}=0 ME{XY}=E{X}E{Y} (d) E{X}-E{Y.}=0 (e) None cfabove I V 8) .If X is orthogonal to Y, andXI Y are jointly normal with 0 mean, then X: Y are independent. M1116. (b) False. @ V/s) If X and Y are independent and exponentially distributed, then X+Y must be exponentially distributed. ® (a) True. Wake. if '10) IfX and Y are jointly Poisson and independent, then X+Y must be Poisson. \La’)” T rue. (b) False. ® l/r'11) For arbitrary random Variables X and Y, if rx, = 0 , thenX and Y are independent. (21) True. MFalse. ® V12) In general, E{E{X [Y}} is a____. "(a) function of x (b) function of y (0) function of X 9 (d) function of Y (2)” constant (d) None of above ”; l/ 13) HA and B are independent and P(A) at O,P(B) ¢ 0,2 L It a then A and" B can’t be mutually exclusive. (3L7 M True. (b) False. ‘ V” 14) If P(A l B) = P(A), then We In have P(B IA) = P(B) (a) True. (b) False. ' view) If P(A I B) = P(B), then we (a) True; vflfi False. \f/ 16) If P(A I B) = P(B), then we ‘(a) True. {5) False. 17) A probability d ity function an be an odd function. (a) True. False. b v”) 18) A probability density function csébe an even function. f \,(«a.’)’ True. (b) False. {/119) X and Y have the joint density function ffl(x,y)=1/2, O<x<2, 0<y<1; 0,0therwise. Then, nylx) equals (a) 2y, for 0 s y S l; 0, otherwise (0) 2, for O _<. y 51/2; 0, otherwise (e None of the above. 7 V”! 20) In)general, E{X | y} is a__. Q) (a) function of x V615) function of y (c) function of X (d) function of Y (e) constant (d) None of above must have P(A (3 st have P(B ] A) = P(B). Ln=mn V09) 1, for 05y $1; 0,0therwise (d) 1/2, for 05y $2; 0,0therwise ...
View Full Document

This note was uploaded on 03/31/2012 for the course EE EL630 taught by Professor Chen during the Spring '10 term at NYU Poly.

Page1 / 17

real final test - Fall 2010 EL6303 Namew (Show all your...

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online