{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

2010-03-01_141110_baislerj

2010-03-01_141110_baislerj - 1...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
1. Briefly, what is probability (include in this the 3 "approaches" to probability discussed in the early part of  chapter 5). Classical approach to Probability Suppose there are  outcomes for a random experiment, which are equally likely, mutually exclusive and  exhaustive. If  of the  outcomes are favorable to an event , then the probability of the event is defined as . Frequency approach to probability            Let the experiment be repeated  times. Suppose the event  occurs f times and does not          occur in  times.  Then  is called the frequency of the event  in  repetitions and  is called the relative frequency. The limit of frequency  ration as  becomes larger and larger and tends to infinity is defined as the probability of the event  Axiomatic approach to probability. Consider the collection of all events. Then the function  defined for every event is a probability function if it satisfies  the following three axioms. Axiom 1 (Axiom of nonnegativity) If A is any event, then P(A) 0 Axiom 2(axiom of certainty) Let S be the sample space. Then P(S)=1 Axiom 3EAxiom of additivity) If A and b are mutually exclusive events, then P(A =P(A)+P(B).   2. Please (1) work the following problems, (2) tell me what rule or principle you used to solve them and (3)  then look at others' answers to check yourself and that person -- let's see if we can come to consensus on  them! 1. Ninety students will graduate from Lima Shawnee High School this spring. Of the 90 students, 50  are planning to attend college. Two students are to be picked at random to carry flags at graduation. a. What is the probability both of the selected students plan to attend college? Total number of ways in which 2 students can be selected from 90 students =  Number of ways in which 2 students can be selected from 50 students  Probability that both of the selected students are planning to attend college  b. What is the probability one of the two selected students plans to attend college? Total number of ways in which 2 students can be selected from 90 students = 
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Number of ways in which 1 student can be selected from the group of 50 students and 1 student from the  remaining group of 40 students  Probability that one of the selected students plans to attend college 2. A survey of undergraduate students in the School of Business at Northern University revealed the  following regarding the gender and majors of the students: Major Gender Accounting Management Finance total Male 100 150 50 300 Female 100  50  50  200 total 200 200 100 500 Let us define the following events.
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern