OMU324- H.W#4 Solutions - OMU 324 System Dynamics &...

Info iconThis preview shows pages 1–16. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: OMU 324 System Dynamics & Control Homework #4 Solutions HACETTEPE UNIVERSITY Mechanical Engineering Department System Dynamics & Control Homework #4 Due Date: 05.04.2011 1) A mode}. of a commercial rotting machine for metals processing is shown at right. The model. comprises a cylinder ' fit) of mass in and radius r that spins about ' ¢ a A! a a an axle. The cylinder ions without slip on the lower surface. As seen from the . hydratiiic actuator figure, a damper b, a spring k, and a hydi‘auiic actuator are attached to the axle lioosing. The actuator applies a. force f on the cyiinder atong x direction. a) Obtain the governing differential equations of motion. b) Obtain the state space representation of the system. X (s) c) Obtain the transfer function. HS) Note: I is the moment of inertia of the cylinder. 2) f(t): force which is input of the system 131,152 ,b3: damping coefficients for friction. 64 : damping coefficient of damper. X1, X2 : diSplacements which are outputs of the system. ml , m2 : Mass of the block and sheii. a) Draw the free body diagrams for the biock and sheik and obtain the governing differential equations of motion. b) Obtain the state space representation of the system. 0) Determine the following transfer functions. X169) F(s) ’ X2“) F(s) G109)fl 62(5): 3) Consider the system shown in the figure below. An ammmre controlled DC servomotor drives a load consisting of the moment of ilieifia IL. The torque developed by the motor is T. The angular displacements of the motor rotor and the load element are an and B, respectively The gear ratio is n: 92, Obtain the transfer function 9.2.9:). R :Armature resistance L :Arrnature inductance i : Armature current 1' f : Field cun‘ent T : Servomotor Torque T =K.z‘ eb= 5—4»?- dt I: (I. . r. 62 T (Motor Torque) 8,. : voltage input to armature e!) : back eiectromotor force (emf) 91 : angular displacement of servomotor J : Moment of inertia Take J] , J2 =0 for gear trains. The system shown in the figure is combined translational and rotational mechanical elements. The mass and spring are connected to the disk by a flexible cable. Actually, the spring might be used to represent the stretching of the cable. The mass M is subjected to the external force )2 (I) . Find the state variable equations for the system, treating (r) and the weight of the mass as inputs. J : Moment of inertia B: Rotational damper 9 : Rotational displacement Kl , K2 : Constants of shaft and spring 5) é'l'qg The fluid system which is combined two tanks is shown in the figure. The steady state head of tanks are E and El: respectively. The steady state inflow and outflow rates are The H2 (5) £2(S) ' capacitance of tanks are C1 and C2. Derive the transfer function 6) 3: 1 Steady state temperature of inlet liquid 90 : Steady state temperature of outflow liquid G : Mass flow rate of liquid M :Mass of liquid contained in the heating chamber C ‘. Specific heat of iiquid R : Thermal Resistance C : Thermal capacitance H : Steady state heat input Heater Thermal system shown in the figure contains heating chamber, heater and mixer. (9,: , 60 and h are the changing of inlet temperature, outflow temperature and energy given by the heater. . . . . 0 Obtain the heat balanoing equation and transfer function 0“) . f{(s) H‘W #14 fine;qu ® 9.? JI’L‘Q :Saficé-LW {C%LTA&W'LM,F)> ©wgw, @gkfibnok W K %— FriJ-mn gem, mg; kg, mgémasll en «mic; 4o roiake mé 4-mmsflaifl Hm fibfi§pw W¢‘~§-Ee©u‘\' x maumfilrm: M43 & a”: gomg Mm qwhgi 1:: HQ m1? 0.? 4: v4}. *5 QQSumFica-fi : X’Xfiae" .Por'5swu E9- WQMQQ». @ kw‘awfgw—Xi’m m w kMW+ifi~§UJ¢q f“ nu. d :. mel , “flab” anmé mg 3W£5~fi flag) :fla-Gn 14M L3»; 4 L,(i_) 27w» I’“ ‘5‘“ law L”; + Mfli, gs; my {4-) mpkaM-Lmk .2; V5 ., _. ._ m? k‘KLsfl-E-Nflsh Am? “Kb-3) m Mg) {KW‘NIW’J'E'US’} “T F n GCS) ax (‘5) @ xi“ m rum—«>4 9: 3:. MALE; 2-5 M M 84-5: la~§Pm TZaPrQQWO/L'on .,, 7 K1>szyl ZFxm'CL ;)(_ZF:-M§. :31) j; \ ‘ 2: F a. mi; (pmw gn‘xmw ) Oh mxl 2 kLX4*K-¢)+lv{tii”i1)FL’ciLgWM’ZZ.) Ci) an. @fiuOl-L‘OOS 099 M'an‘n *2 2/. 5&1 =7 while Wilma) “may kDME‘E-w‘ifilflgfl wan bhigfigkfiwwgkfiafi kahunafiwgfl «1:: Mg“) 34.60%me (ammo s +kgwxzts§§Uswfiaz+Ms + kg :3 PM) @ m9}; =~$ 105%. m: kmvma +~ Laimiémf‘)(%ml>fi%g) a: O 27> W151 N19) + {93 “331(5) wk. (K68) "XLL‘SUJ—ESX t('3)”$\*Z,-(‘3):E Lfiioyficf] x: Q RE{Q)EW\L§L+‘03S+kmgigfi’ka-flygfi“Ktifi)£wi’%€%hlégk)§ :L Q "mm = ms). E Wng .. , £55315} +kg§ +k“3 (b%+§32~§~ Mflsfiml: 93¢ Um Ea+$3q59¥ in] -KL(SWL. EQQ' *bfibgflmhk :Hg) £m1§t4£355+k ~$®w€m5m )1 ngfim‘éfi (Lat-Hofifiaflgflkl +xii§j { n ,_ “11914 IDES-i i: - 5 (51491333253) E m) w {[mé‘MWa mg+£3Cmaé‘4b554‘c»SWWMU + mfi 51* WW 2” W m) M t Wiéii» (9554" E m S’QEM Fin-£4 6964) EELS): .. F(€) Rita) : mfiskgmkwsflwkut I m) gfmigwdgfims +kflmg+ b$s+L~SCE away [mefi MS, gm 715 Cam): Kate) 2 Ms). mm F05) £2('55) KM) 61(9): we) aim s _ . $15) €£m(§’+ (\ofi EggbhbflklfimléH-‘DEM‘: “SUD. ‘? bfi‘m mfidlfifi be”) ghgt} x [Aka-Effie” + ‘9] MW me3 61057:- XzLS) : P- (Em Egbhk +\¢ 3 32(9) {[MQS'L'} (Lei laz%‘?¢,)$4&1][Mag-{ESSHL“fiktbluifibqu-i figfigh)$'éjzg glad-e ~— Spnm, Mfg gafiLQ£cafi ;' Eiecxt 0119.99 ?Gr‘{ “lab-WW I &~% l w «H gr“. (P0P ‘L X on}! M . ($0.. 3mm? )1 _ .4 WW 1 "H T .. 5m 6'; ’r ’i (3) a; m Hm— . 5 z a W. WMWVMINVWIMVIuNMfl-MWIMVMM b 7‘ éi£3M+3L.(§:)j z: Kai" m9 Ei(6)—-L-S.IL§) “A11.I(_s)-Eb(s): Q L§®l -—~9 6505) s. [5. s 425mg) E i (s) n L rifts) v {53163 - H A s it“) x" 0 mmwmmm FF- I( )-t\o (é ICQ§L§+RZ = IZIL'S)w Lb-Stfids)‘“‘9 S) LMR ‘3 flag {(3 mevmvmfliMWPWmllvuu'unw-h?ram.mm,m..w,n‘m.w'H‘Mnm‘wfiv «nme-muum.wm pram)? mm) .3 Kama)... ntgsmiig \NJ: Lea-E41 j ‘. ml 31%“) : wK-lfigs.’éflg)+ (Ems) I jag. LEWR L$+WR amém sh ms} 3 -- K Exam» .‘Ls—Ffl Lea-$912.. ®{[3) _ K ‘ _ . Ea‘CS) {Lem-E3). Mgumms- u LMK ® La; 6. MA K Le Mgurecg ‘QFOM Pafivhmfi MFPQ5?aq髧¢-\3 404M, «gem-M'va WM4M SL034- Ki {9 «mi ~ngeiecl mé ‘\\*~e SFHnS [2‘ is “04* s4reckad. Fan‘s <99.— Una Ami; mg Hm moss arm ‘3an waka Pi “has 4% fem Merwé \ma 4km Sfivfifia. Since. Mm Aewnwoé 44's?le M. % foifi) Frown 3-113 +%W+K19‘~RK1{X~EL§L}¢ O Lg; (9.0 3mg, Hm, Mame mushy $$flawfit «233 “Mm $53k m4 my 44% whs‘lmé $mmm+ 0?. 41% mass uméw Wage. cmcbkong . ’TLIQA Eammg, {(4'9'0 ‘3 K {'2‘ (Vsa—v [email protected]): gf‘OM Mow, mmgfi$w Una c95€ whwa, .90, U») (S: fiGn5ége—fo 95$ when-can: UM; Qgg-é-m is in may“, “Lair 9': (90+ ¢ X -: my? 1%: <29 Hun-k (Bf gmL % repregmL “we gcléficonofl; «MQUKCW mé ve/L.:CQQ émgbwfi maeé Bah Hm. in?%.{— _?&H)_ Mole Um:{ La.) ;@ % @mé Vaz‘ixgg; 3L1.) +T§w + Kg£&Q+-®3“1.1CLER¢+%I—K®¢D-°§L®3' a; O +KLEM+7£MEM®EWK®3 a via-mg (Q is mat wage. *é—W.g mam-r13 age-OM, W: M?! M_ W» LL91 Willi § 3 Us +~EUJM14Q3 ~ rucwa N) x o M-{J+¢1(Q"w fifl a Jew” Q 30 um. mmgwéxflfi Sale-Ere-«VMGUQ- Wows. am (35 1W {I}: 2:. #9? [‘(K44Kafiq)¢—Ew '3'“ £2. #24,, = U Q an All: ‘EKJW 42%: +£9U'U 32631 M c‘ ‘3 we) :st) M®1wa Cz-stfis) .1 auLngLQZg) XXL/79.33 ~—-v (9&8) = “LEM-WW) "my {01(5) 3 “2(6) R4 (1522* H213): awkanJs) M” We) / Wm. 843(3) (fights) = mg)... (:18 M933,” M” Q{LS) 2:. CPS—{41(3) = uz($)*Mfil‘3) 17M szfl-Hdfi) “ CL?» fir Higg) may [Mala] “((6); i+Q|-3K{:i—Z ) 5" Clg- + C4 9 + HEB} “M. Q”) .1 {A 5H[($){MCIY~19g + C\‘%‘ HUS) + HLLSXEH‘HKI S]- ' ’M... [41(3) 5 H» CHZNS] ,7. HzLfi) __ HM.EE'§CIEESJ. 1‘ W) HMO),- sr:.+clcam‘mc:\ s + Wm “M, Li;(3) A i+C[?—\ S Q“) [c,C;K{S+C\$+C2.S+ We” 1 '32. meumm. Wm“... H (ms-(v Mgm‘g “mg; “a”? E’L Q"; mm? “é” SW: 259 mm Qa“§(§“0 4," h: G—cWS‘ (Li-Mm%> (tie sz‘fivfi C..d8'o= ' Rliw :=%, l ‘ 6.6.. i Q_ ;ER+(8'£~Q-o\),6’flgv€%‘fii L—‘pTWWfi‘Eflgiww‘W (3.6,: .5. SR. :£h+(¢3‘[~&‘a).i~3 6+ '1?— Q»ém®;i :1 h+£f®é~©fij {H '55... MW mmwhu-ua-mm gamma + [90 t hR+t9j eH I . WW Mxiwge— @L T—Lssgme. Haml- &OL0.)._;O ‘~ 2 =2 2‘ C..<.s. 89(3) 4 GOL51;{4L33.R+ 9% LS) manic.“ i] a my“ 94(5) 90(9) = ___T__L..___..._._ .u<5>+E®c-ém ‘2. K as + J; W ' as ii)», WW (9 LL 5) G LL55 G: 1. L6) 1: (9° (5 ) = R H Cfi) too + i ...
View Full Document

This note was uploaded on 04/01/2012 for the course MECHANICAL MMU-324 taught by Professor Çağlarbaşlamışlı during the Spring '12 term at Hacettepe Üniversitesi.

Page1 / 16

OMU324- H.W#4 Solutions - OMU 324 System Dynamics &...

This preview shows document pages 1 - 16. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online