co331 - Compact course notes Combinatorics and Optimization...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Compact course notes Combinatorics and Optimization 331, Winter 2011 Coding Theory Professor: D.Jao transcribed by: J. Lazovskis University of Waterloo April 6, 2011 Contents 1 Introduction 2 1.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Error detection & correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Finite fields 3 2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Linear codes 5 3.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Dual codes and parity-check matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Cyclic codes 7 4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Encoding with cyclic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Burst errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4 BCH codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction It is always assumed that the source and the receiver are separated by space and/or time. 1.1 Fundamentals Definition 1.1.1. An alphabet is a finite set of symbols. Definition 1.1.2. A word is a finite sequence of symbols from a given alphabet. Definition 1.1.3. The length of a word is the number of symbols in the word. Definition 1.1.4. A code is a subset of the set of words in a given alphabet. Definition 1.1.5. A code word is a word in a particular code. Definition 1.1.6. A block code is a code where every code word has the same length. Definition 1.1.7. The length of a block code is the length of any code word in the block code. Definition 1.1.8. An [ n,M ]-code is a block code C of length n with | C | = M . 1.2 Channels Definition 1.2.1. A channel is a medium over which a symbol is sent. Definition 1.2.2. A symmetric channel is a channel satisfying the following properties: 1. Only symbols from a set alphabet A are received. 2. No symbols are deleted, inserted, or translated. 3. Random independent probability p of error for each symbol. Definition 1.2.3. Given an alphabet A = { a 1 ,a 2 ,...,a q } , let X i be the i th symbol sent, and let Y i be the i th symbol received. Then a q-symmetric channel with symbol error probability p has the property that for all 1 6 j,k 6 q, P ( Y i = a k | X i = a j ) = 1- p j = k p q- 1 j 6 = k Definition 1.2.4. A binary symmetric channel is a symmetric channel using only the binary alphabet.is a symmetric channel using only the binary alphabet....
View Full Document

Page1 / 10

co331 - Compact course notes Combinatorics and Optimization...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online