M16_2_EEM16_F11_L13

M16_2_EEM16_F11_L13 - 1 S T A N D A R D C O M B I N A T I O...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 S T A N D A R D C O M B I N A T I O N A L M O D U L E S D E C O D E R S E N C O D E R S M U L T I P L E X E R S ( S e l e c t o r s ) D E M U L T I P L E X E R S ( D i s t r i b u t o r s ) S H I F T E R S I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 2 B I N A R Y D E C O D E R S H I G H- L E V E L D E S C R I P T I O N : I n p u t s : x = ( x n- 1 , . . . , x ) , x j { , 1 } E n a b l e E { , 1 } O u t p u t s : y = ( y 2 n- 1 , . . . , y ) , y i { , 1 } F u n c t i o n : y i = 1 i f ( x = i ) a n d ( E = 1 ) o t h e r w i s e x = n- 1 X j = x j 2 j a n d i = , . . . , 2 n- 1 I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 3 1 2 y y 1 y 2 n-Input Binary Decoder 2 n- 1 Outputs Inputs E y 2 n- 1 E n x 1 x 1 n- 1 x n- 1 F i g u r e 9 . 1 : n- I N P U T B I N A R Y D E C O D E R . I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 4 E X A M P L E 9 . 1 : 3- I N P U T B I N A R Y D E C O D E R E x 2 x 1 x x y 7 y 6 y 5 y 4 y 3 y 2 y 1 y 1 1 1 1 1 1 1 1 2 1 1 1 1 3 1 1 1 4 1 1 1 1 5 1 1 1 1 6 1 1 1 1 1 7 1---- B I N A R Y S P E C I F I C A T I O N : I n p u t s : x = ( x n- 1 , . . . , x ) , x j { , 1 } E { , 1 } O u t p u t s : y = ( y 2 n- 1 , . . . , y ) , y i { , 1 } F u n c t i o n : y i = E m i ( x ) , i = , . . . , 2 n- 1 I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 5 E X A M P L E 9 . 2 : I M P L E M E N T A T I O N O F 2- I N P U T D E C O D E R y = x 1 x E y 1 = x 1 x E y 2 = x 1 x E y 3 = x 1 x E E y y 1 y 2 y 3 x x 1 F i g u r e 9 . 2 : G A T E N E T W O R K I M P L E M E N T A T I O N O F 2- I N P U T B I N A R Y D E C O D E R . I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 6 D E C O D E R U S E S 4- I n p u t B i n a r y D e c o d e r 1 5 . . . 4 3 2 1 E n E = 1 L O A D S T O R E A D D J U M P O P C O D E f i e l d O t h e r f i e l d s I n s t r u c t i o n D e c o d e d o p e r a t i o n s F i g u r e 9 . 3 : O P E R A T I O N D E C O D I N G . I n t r o d u c t i o n t o D i g i t a l S y s t e m s 9 S t a n d a r d C o m b i n a t i o n a l M o d u l e s 7 D E C O D E R U S E S Binary Decoder 1 2 1 6 3 8 3 1 4 A d d r e s s R e a d / w r i t e D a t a i n p u t D a t a o u t p u t B i n a r y c e l l 1 C e l l r e f e r e n c e d w h e n a d d r e s s i s ( b ) R A M M o d u l e ( 2 x 1 ) 1 4 1 4 A d d r e s s R e a d / w r i t e D a t a i n p u t D a t a o u t p u t ( a ) E = 1 F i g u r e 9 . 4 : R A N D O M A C C E S S M E M O R Y ( R A M ) : a ) M O D U L E ; b ) A D D R E S S I N G O F B I N A R Y C E L L S ....
View Full Document

Page1 / 62

M16_2_EEM16_F11_L13 - 1 S T A N D A R D C O M B I N A T I O...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online