Lecture 12 - Binary Trees, Binary Search Trees

# Lecture 12 - Binary Trees, Binary Search Trees - Wednesday...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Wednesday, Feb 29th • Binary Tree Traversals • Using Binary Trees to Evaluate Expressions • Binary Search Trees • Binary Search Tree Operations – Searching for an item – Inserting a new item – Finding the minimum and maximum items – Printing out the items in order – Deleting the whole tree CONSIDER REVAMPING SIMPLIFY INSERTION PSEUDOCODE SHOW TREE BEING HALVED DURING EACH SEARCH STEP Binary Tree Traversals When we process all the nodes in a tree, it’s called a traversal. There are four common ways to traverse a tree. 1. Pre-order traversal 2. In-order traversal 3. Post-order traversal 4. Level-order traversal Let’s see a pre-order traversal first! The Preorder Traversal Preorder : 1. Process the current node. 2. Process the nodes in the left sub-tree. 3. Process the nodes in the right sub-tree. By “ process the current node ” we typically mean one of the following: 1. Print the current node’s value out. 2. Search the current node to see if its value matches the one you’re searching for. 3. Add the current node’s value to a total for the tree 4. Etc… NULL “a” “b” “c” NULL “d” NULL NULL NULL “e” NULL root void PreOrder(Node *cur) { if (cur == NULL) // if empty, return… return; cout << cur->value; // Process the current node. PreOrder(cur->left); // Process nodes in left sub-tree . PreOrder(cur-> right); // Process nodes in left sub-tree . } main() { Node *root; … PreOrder(root); } NULL “a” “b” “c” NULL “d” NULL NULL NULL “e” NULL root cur Output: a b The Pre-order Traversal d void PreOrder(Node *cur) { if (cur == NULL) // if empty, return… return; cout << cur->value; // Process the current node. PreOrder(cur->left); // Process nodes in left sub-tree . PreOrder(cur-> right); // Process nodes in left sub-tree . } cur void PreOrder(Node *cur) { if (cur == NULL) // if empty, return… return; cout << cur->value; // Process the current node. PreOrder(cur->left); // Process nodes in left sub-tree . PreOrder(cur-> right); // Process nodes in left sub-tree . } cur void PreOrder(Node *cur) { if (cur == NULL) // if empty, return… return; cout << cur->value; // Process the current node....
View Full Document

{[ snackBarMessage ]}

### Page1 / 51

Lecture 12 - Binary Trees, Binary Search Trees - Wednesday...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online