set2_prolemsandsolutions

# set2_prolemsandsolutions - MA 527 EXAM 2 Fall 2010 Page 1/5...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MA 527 , ,, EXAM 2 Fall 2010 Page 1/5 t / V (10 pts.) 1. Assume that y(t) is a solution to the problem 2y” + 33/ + y = 6(t — with y(0) = 5 and y’(0) = 7. s 2) Find the Laplace Transform Y of y(t). (DO NOT FIND y(t). Just ﬁnd Y(s).) ,. ~ + f _ ~35 :9 » a afsaf~597jt3£3 ) ﬂ [Os +37 +635 Y 1 \$437+ 35 4* l (20 pts.) 2. Graph the function f (t) given below. Next, express f (t) in terms of step functions and simple functions of t. Finally, compute the Laplace transform of f. 0 forOStSl f(t)= (t—1)for1£tg2 1 for2£t l ’A » . a i 9 41(45): CH (VD -“ ué€-3)j(e~i) + “(way 1 ~:_ 054‘)“ (MW -- Ct "52)“ [t ’3) ‘71:.» M“) Page 2/5 (20 pts.) 3. Find the Inverse Laplace Transforms of the following functions. L _ A g _ a _ (“2) a) 8 s “ ‘1’“ t w \$+3»A(5H)r3 b) (afﬁx +1) 5% 6H 2 (MB): + (M233 (8+1)2 3—3 C)(S+1)2+4 A'f'lzz ’l Cu) "5 LI Anny} Cb) “l "" * '7 ' “7:11 éfa 54' (Q’M/ Mga ’ 2””:66’33 Lleat (a), [4‘4 ﬂ “~95 , ~ 1 5 19) j atlas“? ﬂuvsna'sﬂ a H) Ht) [2(9) . 4&5) 60 925,4 :3 (t’9>€ MOVIE) c) g»; 3., [Gm—I] L{ H (M) :2 ﬂ ’- 1 2 2 m2 8H)“ + 21 (5+1) +QA (EMU :2 (6H) #3 h M 2 a (Q ‘ (9+!)J+J (6H) +9 w t “b as 225 Page 3/5 (20 pts.) 4. Find all positive eigenvalues for the Sturm~LiouVille problem 3;” + Ay = 0 with y'(0) = 0 and y(2) = 0. (Don’t bother checking the A = 0 or A < 0 cases, and don’t ﬁnd the eigenfunctions.) 2 5’ ﬂ a+ ' 9c COSMK'tC {Eh/MK wimp} YUM/{’0} wh/w x5) . «4 mm 4" Z , "(0) ‘1 Cog/Aviaﬂ, 40 C02: (7 am! y: chos/ozx I; [want g(2) 7-: s 0 o mad (099/430 9": “CM/162mm mm (bi/4% 5% {X Newt auz’w’r, WWW f“ m” a #4 a! / Map/[)Q/ rr« 1/)” a 2“ ’Z’ A) A 2W, PDSPHV/ﬁ Qty/at/H/ﬂl/dé‘) \$3M » (34‘ .2 / M/ﬂjil / a 2 1 2,—‘9- 1N1 (:7 511 gll [If a /) “ﬂ ) W 2 “’“2 [6: ﬂy /(1 /C4 (10 pts.) 5. Suppose 2:021 bn sin ms is the Fourier series for the function which is —\$2 for —7r < m < 0 and is m2 for 0 g a: < 7r. Find 220:1 bfl. Note: You do not need to compute the bn to do thiswproblem. I; 1 v 94 I‘ J ' 9 ’1 a! 91 A L x ?arse\/mi55 3% + £04m Ham).. g: b” ’17 MM) M ’1“ “’I 'l‘ ' h’ “u even Oéiadaiaa ‘2 ’2‘] Q J T; Li .2 7(5 '17 QTL’ 4 77‘ £(«>M:;§ a auxin] : _____ 0 ll 0 ll 5 0 B m f. (10 pts.) 6. Show that the functions 1, 9:, and cosac are orthogonal on the interval —7r < cc < 71' using properties of integrals of odd and even functions when applicable. Given that f(x) = 01-1 +0250 +03 cosx, express 02 in terms of integrals over the interval —7r < a: < 7r involving f and the given functions. (if (v 4 S“t.x 4W0 ngnxmo ~ 7 ,v '1‘ “u '1‘ i "‘ by“ even eVeVl 0 W W W M ‘1" LI _, /\ (7 '7? W W‘X X’C’SX axlem : C ’f C . ,., u A L( 1 I C é(7 ‘ ’ ‘1? WWW “(’0 1‘ 91f "X “W 5 “CWT .w «(a :E’W‘r/ Sty QTY/3 (10 pts.) 7. Let Page 5/5 woo ‘ 0061,0407 -7( -wa ~ L a M e e W' (Y W O . I ("pan/)X B a . 'f -3 ,au/ ‘8 +11% (—1333 4 e C 6% T '\ ‘ a0 lei.” : 1:5?” beam/ea“ ...
View Full Document

## This note was uploaded on 04/03/2012 for the course MA 527 taught by Professor Weitsman during the Spring '08 term at Purdue.

### Page1 / 5

set2_prolemsandsolutions - MA 527 EXAM 2 Fall 2010 Page 1/5...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online