Unformatted text preview: = dgh + gdh dx dx dx f(x)=x2(x 1) âˆ’ â†’ df = 2Î¾(Î¾129 +Î¾2 dx Iff(x)=g(x),then df = 1 Î´ Î³Î·  Î³Î´Î· h(x) dx h2 dx dx f(x)= x2 â†’ df = 1 2Î¾(7 +Î¾29 Î¾2 (7 +Î¾29 dx (7 +Î¾292 Example: 6. Logs and Exponentials Example: 7. The Chain Rule Example: If f(x) = ln(x), then df = 1x dx Iff(x)=ex,then df =ÎµÎ¾ dx If f(x) = eg(x), then df = dgeg(x) dx dx f(x) = ex2 â†’ df = 2xex2 dx Ifz=f(y)and y=g(x),then dz = dfdy dx dy dx z=y2,y=(x2+3x) â†’ dz = 2 Î¾ 2 + 3Î¾ ( 2Î¾ +329 dx...
View
Full Document
 Spring '12
 PeterWilcoxen
 Economics, Calculus, Derivative, dx dx dx, Maxwell School of Citizenship and Public Affairs, Maxwell School Syracuse University, Peter J. Wilcoxen

Click to edit the document details