2D Kinetic Energy - 2D Kinetic Energy of a Rigid-Body Kinetic energy of the ith particle 1 1 Ti = m i v i2 = m i v i v i 2 2 Note v i = v p r(relative

# 2D Kinetic Energy - 2D Kinetic Energy of a Rigid-Body...

• Notes
• gib2800
• 2

This preview shows page 1 - 2 out of 2 pages.

2D Kinetic Energy of a Rigid-Body Kinetic energy of the i th particle: i i i 2 i i i v v m 2 1 v m 2 1 T = = Note : r ω v v p i × + = (relative motion analysis equation) where k ω ω , j y i x r = + = ) r ω ( ) r ω m 2 1 ) r ω v m v m 2 1 ) r ω v ) r ω v m 2 1 T i p i 2 p i p p i i × × + × + = × + × + = ( ( ( ( For planar problems: ) y (x ω ) r ω ( ) r ω ( 2 2 2 + = × × Therefore, ) y (x ω m 2 1 ) r ω v m v m 2 1 T 2 2 2 i p i 2 p i i + + × + = ( This is for the i th particle. Now integrate over the entire body: Letting dm m i + + × + = m m m )dm y (x ω 2 1 ) dm r ω v v dm 2 1 T 2 2 2 p 2 p ( -axis) bout the z inertia a (moment of t P) of mass wr of center (location s of body) (total mas note: m P m 2 2 G/P m I dm ) y (x r m dm r m dm = + = = 2 P G/P p 2 p ω I 2 1 ) r ω v m v m 2 1 T + × + = ( General expression for the kinetic energy of a rigid-body in plane motion