7 to post (8)

7 to post (8) - Chapter7 MODEL macroscopicobjects level 7....

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
THE QUANTUM MECHANICAL  MODEL Chapter 7
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Two Branches of Mechanical Physics Classical Mechanics  – laws describing the motion of  macroscopic objects Quantum Mechanics  – principles of electrical and  magnetic properties at the atomic and subatomic  level
Background image of page 2
§7.2  Electromagnetic Radiation All electromagnetic radiation travels in waves.  Waves  have three basic characteristics: 1) Wavelength  ( ) - the distance between the  λ crests or troughs of a wave. 2)  Frequency  (nu,  ѵ ) - the number of waves per  second passing a certain point.  3)  Speed  (c)  – all electromagnetic radiation has  the same speed, the speed of light ( c ): c  = 2.9979  ×  108 m/s
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
§7.2  Electromagnetic Radiation All electromagnetic radiation  travels at the speed of light. As wavelength decreases,  frequency increases, and vice  versa: λ↑ ѵ       λ↓ ѵ This reciprocal relationship is:  ∙  λ ѵ   =   c Units of  λ  are in m;  ѵ  are s-1  (hertz).
Background image of page 4
§7.2  The Electromagnetic Spectrum Electromagnetic radiation is classified based on  λ
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
§7.2  Interference Waves interact with each other via interference.  Constructive interference  – two waves add to make a  larger wave Destructive interference  – two waves cancel each other out
Background image of page 6
§7.2  Diffraction Diffraction   - waves (not particles) bend around an opening  in a barrier. Diffraction through two slits gives an interference pattern of  the diffracted waves. 
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
§7.2  The Photoelectric Effect Photoelectric Effect -  when exposed to certain light,  metals eject electrons from their surface. It was first predicted that the electron’s energy  would  be proportional to the  intensity  of the light source. According to this theory, if a dim light was used there  would be a lag time before electrons were emitted (to  give the electrons time to absorb enough energy).   a metal
Background image of page 8
The PE requires a minimum or threshold frequency  of light to occur.  Electrons dislodge  immediately  from metals exposed  to dim light at or above the threshold frequency.   The PE depends on light frequency  not intensity. Higher frequency  higher energy electrons  Higher intensity  more photons  more dislodged electrons §7.2  The Photoelectric Effect
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
§7.2  Einstein and the PE Effect Einstein proposed light is a stream of  particles   ( photons,  units or quanta of EMR).
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 48

7 to post (8) - Chapter7 MODEL macroscopicobjects level 7....

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online